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Abstract

Managing the risk associated with uncertain load has always been a challenge for retailers in elec-
tricity markets. Yet the load variability has been largely predictable in the past, especially when aggre-
gating a large number of consumers. In contrast, the increasing penetration of unpredictable, small-scale
electricity generation by consumers, i.e. self-generation, constitutes a new and yet greater volume risk.
Using value-at-risk metrics and Monte Carlo simulations based on German historical loads and prices,
the contribution of decentralized solar PV self-generation to retailers’ load and revenue risks is assessed.
This analysis has implications for the consumers’ welfare and the overall efficiency of electricity mar-
kets.
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1 Introduction

Unlike intermediaries in other commodity markets, retailers in competitive electricity markets

are exposed to both volume and price risks (Weron, 2007; Boroumand and Zachmann, 2012;
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Boroumand et al., 2015). A crucial aspect for hedging these risks is the growing penetration of
unpredictable, small-scale electricity generation from renewable energy sources (RES), such as
wind and solar, in the residential sector, namely self-generation, and the consequent greater self-
sufficiency of consumers. Self-sufficiency refers to the extent to which self-generation satisfies
the electricity demand (Schreiber and Hochloff, [2013; Luthander et al., 2015). While they can
be seen as energy conservation and have a considerably high economic value for energy systems,
RES may critically affect the retailers’ risks exposure. Especially, rooftop solar photovoltaic (PV)
systems are characterized by a high correlation with weather conditions, high volatility over time
and spatial distribution (Boroumand and Zachmann, 2012} |[Haas et al.,[2013}; Ruppert et al., 2016).
By changing the standard withdrawal of electricity from the grid ascribed to the residential sector,
self-generation can lead to a greater uncertainty in the retailers’ load.

Whilst in wholesale markets load uncertainty is adjusted in the spot markets through spot prices,
prices are generally fixed for a longer period in the retail markets (Boroumand et al., 2015)). There-
fore, the retailers are unable to transfer the spot price volatility to the final consumers. Furthermore,
since electricity cannot be stored economically at scale yet (International Energy Agency, [2017),
the retailers are required to balance their wholesale and retail portfolios on a real-time basis (Bunn,
2004} Boroumand et al., 2015; D1 Cosmo and Malaguzzi Valeri, 2018). This real-time dimension
can be further exacerbated in the presence of a high penetration of decentralized solar PV systems.

The aim of this study is to assess the extent to which an increasing self-generation, as driven by
rooftop solar PV systems, can affect the exposure of electricity retailers to load and price risks. The
German market is considered since it is at the forefront of solar PV installation: In 2016, Germany
accounted for 14% (41 GWp) of the cumulative PV capacity installed worldwide (292 GWp), cor-
responding to 1.6 million PV systems (International Renewable Energy Agency, 2017b). Rooftop
installations, i.e. usually systems with a capacity up to 12 kWp (International Renewable Energy
Agency, 2017a), represented about 42% of the 2016 German total solar PV installed capacity, cor-
responding to 17 GWp (Fraunhofer Institute for Solar Energy Systems ISE, [2017). In all, in 2016

solar PV generation represented 10% of households’ electricity demand in Germany, correspond-



ing to 14.5 TWh (BMJV| 2017). Hence, Germany can be regarded as a representative model when
considering the development of solar PV systems in other European countries and worldwide (Ket-
terer, 2014; |Gersema and Wozabal,, 2017)).

The Conditional Value-at-Risk (CVaR) and Monte Carlo simulations based on day-ahead prices
and loads over the period January 2015 - December 2016 are used to evaluate the retailers’ risk
exposure. Drawing from the literature on quantitative models for electricity prices and loads, tradi-
tional finance approaches are adopted, which allow for seasonal variations, jumps and stochasticity
in the hourly electricity price and load time series, and for the association between load and prices
(Coulon et al., 2013; Weron, [2014). In all, this analysis is relevant when considering the impact of
the retailers’ hedging costs on the consumers’ welfare, and the implications of a high penetration
of intermittent self-generation for electricity markets efficiency.

The remainder of this paper is organized as follows. In Section 2, the literature is reviewed.
Section 3 focuses on the data and the methodological framework. Results of the retailers’ risk

assessment are reported in Section 4 and discussed in Section 5. Finally, Section 6 concludes the

paper.

2 Literature Review

The specific characteristics of the electricity demand, namely mean-reversion, seasonality, high
short-term variability, inelasticity, lead to a strong volatility of the electricity spot prices (e.g. Lu-
cia and Schwartz, |2002; [Stoft, [2002; [Huisman and Mahieu, 2003}; Bunn, 2004} Escribano et al.,
2011). In a competitive electricity market, retailers buy electricity in the wholesale market from
the generators, through futures and forward contracts, or on the spot market (day-ahead and intra-
day markets), and sell electricity to the consumers in the retail market at generally fixed prices,
i.e. tariffs (Boroumand and Zachmann, 2012} Batlle, 2013)). Since electricity is not economically
storable yet, any load imbalances between wholesale and retail market are adjusted on the spot

market at unpredictable prices, and the retailers are unable to transfer this unpredictability to the



consumers. By sourcing electricity for resale to final consumers, retailers are therefore exposed to
the volume risk, namely load risk, mostly over short-term horizons, i.e. from a few days or hours
to real-time (Boroumand and Zachmann, 2012)).

The inability to perfectly transfer risks across market players highlights the incompleteness of
the electricity markets (Bessembinder and Lemmon, [2002; [Willems and Morbee, [2010). Given the
observed positive correlation between price and load in wholesale electricity markets (e.g. Deng
and Oren, 2006; [Weron, 2007} (Gelabert et al., |2011), depending on the load variability and the
difference between spot and retail prices, large losses can emerge in the short-term for the retailers
who are not effectively hedged against a multiplicative risk of load and price (Willems and Morbee,
2010; Aid et al., 2011; |[Dagoumas et al., [2017).

In the past, load variability was highly predictable by aggregating a large number of consumers,
since aggregation reduces the inherent load variability and results in smooth load shapes (e.g. Rasi-
nen et al., 2010;|Chiccol 2012; Rhodes et al., 2014). Therefore, notwithstanding the market incom-
pleteness argument, static hedging strategies were adopted against the multiplicative load-price risk
faced by the retailers. These strategies were based on forward, futures and options contracts that
were not re-balanced until the maturity of the shortest-term contracts (Carr and Wul, 2002)), and
were argued to offer an optimal risk management (Oum and Oren, [2010; [Willems and Morbee,
2010; (Coulon et al., 2013)).

While investigating the hedging problem faced by the electricity retailers, Boroumand and
/achmann (2012)) assumed that the load risk de facto translates into a price risk, since prices re-
flect discrepancies between the retailers’ buying and selling portfolios, and are positively correlated
with the demand. Therefore, the retailers minimize the load and price risks by hedging a ceratin
amount of their aggregated load requirements based on a standard load profile. The authors adopted
value-at-risk metrics and numerical simulations based on the observed hourly price-load pairs to
assess the retailers’ exposure to the multiplicative risk of load and price in the French market. In a
similar vein, Boroumand et al.|(2015) and Boroumand and Goutte|(2017) investigated the retailers’

risk exposure in the French and German-Austrian markets, respectively, and highlighted the need



for intra-day hedging strategies, fitting the characteristics of the electricity demand. Nonetheless,
whilst the standard load profile can be used to represent the shape of the electricity demand of the
residential sector, it is based on historical data and does not capture the ongoing transformation of
the electricity sector and, in particular, the technological trends in distributed electricity systems
(Hayn et al., 2014; McLoughlin et al., 2015; [Sevlian and Rajagopal, 2018)). Kettunen et al. (2010)
focused on the price and load correlation to address the risk management problem faced by the elec-
tricity retailers’. They argued that this correlation directly affects the hedging strategy efficiency,
thus implying that retailers’ risk exposure is time-varying and subject to the joint movements of
price and load.

Managing the risk associated with a variable load in the wholesale markets through derivatives
contracts has always been a challenge. These contracts, in particular futures and forward con-
tracts, are daily contracts and available are different maturities: up to a few days ahead (e.g 7 in
the German market, 5 in the UK); weekly contracts (up to 4 weeks ahead in most of the European
countries); monthly contracts (up to 6 months ahead); quarterly and annual contracts (ranging from
6 quarters to 3 years ahead). Yet these contracts are settled against base (24 h, weekdays and week-
ends), peak (8 am to 8 pm, weekdays), and off-peak (8 pm to 8 am of the next day, weekdays)
loads, while the contracted price and volumes remain constant through the delivery period. In the
short-term, only day-ahead contracts allow for the risk management of the load variability on an
hourly basis, thus permitting the adjustment of base, peak and off-peak contracts into hourly phys-
ical commitment (Kettunen et al., 2010). Yet the increasing penetration of self-generation requires
a finer adjustment to balance the differentials between forecasted and actual loads.

Whilst intraday markets allow for a finer adjustment of the day-ahead positions up to 15-minute
resolution, the electricity generated by RES has to be traded day-ahead to be adjusted intra-daily
(Kiesel and Paraschiv, 2017). Furthermore, significant differences can emerge between day-ahead
and intraday prices depending upon substitution effects between thermal and RES generation (i.e.
merit order effect), with intraday prices decreasing relatively to the day-ahead prices for increasing

levels of RES generation (Karanfil and L1, 2017} |[Kiesel and Paraschiv, [2017). The electricity de-
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Figure 1: German hourly load of the residential sector (Source: Based on data from the Open
Power System Data Platform)

mand by households is an obligation placed on the retailers at pre-specified tariffs and for a named
amount of their sales (Newbery et al., 2018)). Nonetheless, with increasing self-generation, their
actual supply becomes highly dependent upon the level of self-sufficiency, resulting in a greater
load and price risk exposure of the retailers on the day-ahead markets.

Self-generation does not have to be traded via the wholesale market (Ackermann et al., |2001)
and results in a number of potential benefits for the energy system, among which there is the
reduced peak generation requirement (see |Luthander et al., 2015, for a survey). Nonetheless, self-
generation from rooftop solar PV systems increases the load dependence on weather, seasons, and
time of the day (Ruppert et al.l 2016), thus resulting in less smooth and spikier grid load shapes,
which can make the existing standard load profiles inappropriate. This inappropriateness is high-
lighted in Fig[l} which shows the German hourly load (in MW) of the residential sector in June
2010 and 2016 (chart (a) and chart (b), respectively), and the contribution of rooftop solar PV self-
generation in satisfying the electricity demand of the residential sector (blue area in the charts) in
the perio

The high load unpredictability led by the increasing PV self-generation in the residential sec-

tor represents a new and yet greater challenge for the retailers in electricity markets. This unpre-

'Based on data from the Open Power System Data Platform. https://data.open-power-system-data.
org/time_series/
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dictability implies greater hedging pressure for retailers increasingly exposed to real-time changing
loads, and can translate in a high risk premium in the electricity price paid by the consumers (New-
bery et al., 2018). Yet research focusing on risk assessments with increasing RES penetration
mainly relies on the portfolio optimization theory (Markowitz, 1952) to address the risks faced by
electricity generators (Bhattacharya and Kojima, 2012; |Sadorsky, 2012} Janghorbani et al., 2014;
Bhattacharya et al., |2016) and investment decisions of the optimum energy mix (Delarue et al.,
20115 Sunderkotter and Weber, 2012} Lynch et al., 2013; |Gatzert and Kosub, 2016). The extent to
which self-generation can affect the electricity retailers’ risk exposure is a research question that,

to the best of our knowledge, is still under-researched in literature.

3 Data and Methodological Framework

3.1 Data Description

The German electricity market has been subject to a high RES penetration, in particular rooftop
solar PV systems in the residential sector, making this market a suitable case study to investigate
retailers’ risk exposure to the increasing self-generation. The period under investigation runs from
January 2015 to December 2016.

Data on the household solar PV installed capacity (in kWp) and generation (in GWh) are col-
lected, as published on a monthly basis by the national regulator (Bundesnetzagentur) in accordance
with the German Renewable Energy Sources Act (EEG) 2014 (BMWI, [2014) and the Core En-
ergy Market Data Register Ordinance, MaStRV (BMJV, 2017ﬂ Following Ruppert et al.| (2016),
residential installations with a maximum capacity of 12 kWp are considered, since this capacity
corresponds to rooftop PV systems for areas up to 80 m? and with an average size of 6.5 kWp,
which is in line with the data reported by [International Renewable Energy Agency (2017a) in the

period 2010-16. Therefore, in the remainder of this study, we refer to rooftop PV systems with

2https://www.bundesnetzagentur.de/EN/Areas/Enerqgy/Companies/DataCollection
Monitoring/CoreEnergyMarketDataRegister/CoreDataReg_node.html
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a maximum capacity of 12 kWp when considering self-generation from solar PV systems in the
residential sector. The households’ standard load profile (in kWh) is used to fit the electricity de-
mand of the residential sector. This profile is based on hourly historical data available from the
German Association of Energy and Water Industries (BDEW) (Schieferdecker et al., [1999; [Hayn
et al., [2014). Therefore, 24 profiles are obtained, which describe the hourly residential electricity
demand over the period.

Data on the German import/export exchanges, total load, run-off-river hydro load and biomass
load are collected from the ENTSO-E Transparency Platform on a quarter-hour frequency (in
MW’ Data on wind and solar system loads are obtained from the four German TSOs websites,
namely 50Hertz, Amprion, Tennet, TransnetBW on a quarter-hourly basis. Hence, the residual
load is computed by subtracting from the total load the import/export flows, wind and solar loads,
the run-off-river and biomass loads, and a must-run requirement of thermal generation, which is
assumed to be 20 GW (Schill, 2014). The residual load is aggregated on an hourly basis by using
the average in the period and organized in 24 time series of daily observations, such that each series
contains 731 hourly observations.

The German/Austria hourly day-ahead auction prices (DE/AT Phelix, Euro/MWh) are obtained
from EPEX—Spoﬂ The price time series is thus re-arranged in 24 daily series of hourly observa-
tions, in line with the residual load series.

The collected data are used to assess the retailers’ risk exposure to increasing self-sufficiency
in the residential sector, as driven by the decentralized solar PV generation, through a three-step

procedure. This procedure is described below.

3.2 Methodology

First, the German hourly households’ standard load profile and the solar system load are used to
compute increasing degrees of self-sufficiency and the corresponding levels of decentralized PV

generation on an hourly basis. Therefore, the data on the German monthly household solar PV

3https://transparency.entsoe.eu/
4http://www.epexspot .com/en/market-data/dayaheadauction
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installed capacity and generation are used to compute the solar PV capacity factor and estimate
the additional amount of PV capacity required to satisfy the increasing degrees of self-sufficiency.
Second, the relationship between hourly residual load and day-ahead prices in the German market is
modelled, and the effect of the decentralized PV generation on the residual load and, in turn, on the
prices (i.e. merit order effect) is accounted for. Third, Monte Carlo simulations are used to evaluate
the sensitivity of residual load and day-ahead prices to increasing levels of decentralized solar PV
generation and assess the retailers’ load and revenue risk exposure. Parameters and notation are

introduced below.

3.2.1 Self-sufficiency and self-generation from rooftop solar PV

Following Schreiber and Hochloff| (2013)) and Luthander et al.| (2015), the annually balanced self-
sufficiency is defined as the amount of annual electricity demand of the residential sector S L P that

is satisfied through self-generation from rooftop solar PV systems PV G, i.e.:

PV{E

Annually Balanced Sel f — Suf ficiency = SIp’

ey

where SLP is the cumulative value of the hourly households’ standard load profile SLP,; over
a one-year period, i.e. SLP = 2}21320 fii SLP,,. While assuming different degrees of self-
sufficiency, two aspects of the electricity demand in the residential sector are considered. The first
aspect concerns the dynamics of electricity demand, which change depending on the season and
the hour of the day, as highlighted by the time-varying households’ standard load profile SLFP; ;
(e.g. Hayn et al., 2014). The second aspect refers to the solar generation, which relies on the
solar irradiation and is thus weather-dependent (e.g. Ruppert et al., 2016)). Consequently, the self-

generation PV G in Eq[I]is allowed to change across the year and tally with the solar system load

in the sample period as follows:

Solar Load
PVGy = PVG x —gr ol 0000t

Y
heo Dty Solar Loady,

2)



where Solar Loady, ; is the solar system load at the hour  of the day t and 3 ;Q’ff:l Solar Loady,

represents the annual solar system load. Based on the annually balanced self-sufficiency in Eq/I]

and the self-generation PV G (Eq[2), the self-sufficiency is defined as:

PVGh,
SLPy,

Self — Suf ficiencyn, = (3)

Consequently, while on an annual basis the self-sufficiency is positive (Eq[I]), on an hourly and
daily basis its values are allowed to be zero, depending on the weather conditions, solar irradiation
and hour of the day (Eq[3). The household solar PV capacity factor is defined in EqH4] and can
be regarded as a measure of the average PV generation delivered over a one-year period and is
computed as the ratio of the actual PV generation to the maximum PV generation from the installed

PV capacity, i.e.:

PVG
(PVCo+ 0.5 % APVC) % 8760’

Solar PV capacity factor = 4)

where PV () is the installed solar PV capacity at the start of the year; APV C represents the
(average) new installed PV capacity over the year; 8760 = 365 days x 24 hours/day is the
maximum available operational time in one-year period assuming the continuous operation of the
installed capacity at its full nameplate capacity.

On average, a solar PV capacity factor of 10% was observed in Germany during the period
2015-16, as recovered from the historical data. By assuming that this capacity factor remains
constant, the additional amount of PV capacity APV C' required to satisfy a given degree of self-

sufficiency, as defined in Eq/[I] is computed as:

PVG
Solar PV capacity factor * 8760

APV(C =2x < — PVCO) . 5)

Annually balanced self-sufficiency degrees of 10%, 20% and 30% are assumed in Eq[I} which

resemble three different cases by (Ruppert et al., 2016), with increasing installation rates of rooftop
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solar PV systems ﬂ The 10% degree represents a reference scenario, which accounts for the status
of the German market in 2016 (BMJV, 2017) and with no additional rooftop PV capacity in the
residential sector; 20% represents a moderate scenario, corresponding to 13 GWp of additional
rooftop solar PV capacity (APV C in Eq[3) with respect to the installed capacity at the end of 2016
(17 GWp). Finally, the 30% scenario implies 28 GWp of new installed rooftop solar PV capac-
ity and is broadly in line with the PRIMES reference scenario for 2030 (European Commission,
2016). The three self-sufficiency scenarios, and the corresponding additional and total installed PV

capacity in the residential sector are summarized in Table 1.

Table 1: Self-sufficiency scenarios for the residential sector

Scenario Annually Additional Total installed
balanced PV capacity PV capacity
self-sufficiency residential sector residential sector
(%) (GWp) (GWp)
1 10 0 17
2 20 13 30
3 30 28 58

In order to account for the time- and weather-dependencies of the decentralized solar PV gen-
eration and annually balanced self-sufficiency (Eq[2] and Eq[3] respectively), the analysis in this
study is performed on a hourly basis and focuses on the hours: 5:00, 8:00, 11:00, 14:00, 17:00, as

described below.

3.2.2 Modeling the residual load and day-ahead prices

The methodology used in this study follows the strand of the literature adopting finance-inspired
reduced-form models. These models capture the main properties and dynamics of the electricity
markets (e.g. Dengl 2000;|Lucia and Schwartz, 2002 Weron, 2007; Escribano et al., 2011) and have
been found to be suitable for the risk assessment in power markets (Benth and Koekebakker, 2008

Coulon et al., 2013; Weron, 2014; Mayer et al., |2015)). Building on these reduced-form models,

3InRuppert et al.[(2016), the installation rate is defined as the percentage of households with a PV system installed.
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some ideas from the structural fundamental models (see |Carmona and Coulon, 2014, for a sur-
vey) are embodied to reflect the relationship between load and prices, and the impact of increasing
renewable generation. Inspired by |(Coulon et al.|(2013), in this study the residual load is first inves-
tigated. Therefore, its link with the day-ahead prices is modelled based on the historical data of the

German market.

Residual load

The residual load Ly, is defined in an additive way as:
Ly = ThL,t + Sﬁ,t + X, (6)

where T,ft is the long-term seasonal component (LTSC); sit is the short-term seasonal component
(STSC); and X, ; is the deseasonalized and stochastic component of the residual load factor. As in
Coulon et al.| (2013), sine-cosine trigonometric functions are used to fit the LTSC. The root mean
square error (RMSE) between the actual data and the fitted LTSC is used to identify the optimal
sine-cosine function. The STSC, which represents the weekly periodicity, is removed by using a
7-day moving-average filter (e.g. Nowotarski and Weron, 2013)).

After removing long- and short-term seasonal components, the remaining stochastic component
of the residual load is calibrated based on a mean-reverting jump diffusion model for its increments,
as defined below:

dXns = —B5 Xpydt + 0" X}, dBE, + JdgF, 7)

where — %X}, is the drift term forcing the process to mean-revert. The mean-reverting process
is assumed to be zero-mean, since the mean level is incorporated in the LTSC T, ,ft. O'LXZi is the
volatility term that, as in Janczura and Weron (2010), aims to account for any general heteroscedas-
ticity of the process. This volatility is dependent on the current residual load level. For positive
values of the coefficient 7L , the higher the absolute value of the residual load, the larger are the

residual load changes. Vice versa, for negative values of v, the lower the absolute level of the
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residual load, the larger are its changes. Consequently, this specification suits the high variability
induced by the intermittent renewable generation in the residual load factor very well. dB,ﬁ , are
increments of a standard Brownian motion; .J is the normally distributed jump size with mean i’/
and standard deviation o/~ while dq represents the increments of a homogeneous Poisson process
independent of dB,’;jt and with constant intensity A\*. When approximating the likelihood function,
the process is discretized by assuming dt — 1, i.e. 1 day. Therefore, the Poisson process is given

by the binary probabilities of a jump (A\*) and no-jumps (1 — A\L).

Day-ahead prices
Inspired by Burger et al.| (2004) and Schermeyer et al.| (2018)), the day-ahead prices P}, ; are

modelled as a function of the residual load factor as follows:

Phy = f(Lny) + ph,ta (8)

where f(Ly) is a deterministic function of the residual load Ly, ;, which captures the power-plant
dispatch and merit-order effect on prices, that is the impact of high RES penetration on prices;
Py, is the residual process of the prices, which thus appears to be uncorrelated with the residual
load process. Consequently, in line with Burger et al. (2004), (L) and Ph,t are assumed to be
stochastically independent. This assumption is supported by the cross-correlation analysis in Ap-
pendix [A.1]

In the literature, the relationship between prices and load has been observed to be concave
(e.g. Pirrong and Jermakyan, 2008}, Carmona et al., 2013; |Coulon et al., 2013)) or concave-convex
(Burger et al., 2004; He et al., 2013; Wozabal et al., 2016) and has therefore been modelled through
exponential functions or polynomial functions, respectively. The relationship between day-ahead
prices and residual load in the German market during the period January 2015-December 2016 and
at hours 5:00, 8:00, 11:00, 14:00, 17:00 is illustrated in Fig[2] via scatter plots. This relationship
appears to be concave-convex, mainly at 11:00, 14:00 and 17:00, despite some outliers, in partic-

ular in the lower tail. Similar to Burger et al. (2004) and Schermeyer et al. (2018]), polynomial
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Figure 2: Relationship between day-ahead price (Euro/MWh) and residual load (MW)

functions are used to approximate the deterministic function of the residual load f(L;,) in Eq
after removing the outliers, i.e. observations above and below the upper and lower 2.5% percentiles
of the empirical distributions, and replacing them with the corresponding percentile (e.g. Janczura
et al., 2013)).

The residual component of the price series P, ; in Eq is depicted in Fig and exhibits long-
and short-term seasonal behaviors, which are assumed to be uncorrelated with the residual load.
Given the observations above, the residual component of the price P, ; is defined in an additive

way as:

where T}f . and si . are the LTSC and STSC of the price process, respectively, and Y}, ; represents
the stochastic component of the price series. In line with the residual load in EqJ6] and following
Escribano et al.| (2011) and |Coulon et al.| (2013) sine-cosine trigonometric functions and a 7-day
moving average process are used to fit the LTSC and STSC, respectively. As in previous research

(i.e. [Weron, 2014), the stochastic component of the price series Y}, ; is assumed to follow a mean-
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Figure 3: Residual component day-ahead prices (Euro/MWh)

reverting jump diffusions process with stochastic volatility, 1.e.:
Yy, = —B°Y,dt + oY, dBE, + Jdg". (10)

The load-price pairs in Eq[6| -Eq[9] are estimated using the seemingly unrelated regressions
(SUR) method, thus accounting for possible cross-sectional correlations between the hours

man et al., 2007). For increasing degrees of self-sufficiency in Eq[T] the amount of self-generation

through rooftop PV PV G in Eq[2] represents the main source of load uncertainty faced by the re-
tailer, which therefore represents his/her load risk. C'eteris paribus, higher self-generation implies
lower residual load (Eq[6]), which in turn affects the day-ahead prices (Eq[).

The impact of different degrees of self-sufficiency on the residual load is measured as follows:
Ly, =Ly, — PVGj,, (11)

where 7=1,2,3 indicates the three self-sufficiency scenarios in Tab PVG}'M is the self-generation
in E and L}'m in the recomputed residual load at each scenario. Therefore, the analysis is con-

ducted by only varying the level of self-generation from rooftop PV and maintaining unchanged the
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other components of the residual load. The new day-ahead price series P}it is therefore modelled

as a function of the recomputed residual load Lﬁht as follows:

P, = f(Ly,) + Puy, (12)

where f (Lﬁl’t) represents the deterministic function of the residual load under the scenario ¢. The
residual component PM is assumed to be constant across scenarios since, as mentioned above, it is
uncorrelated with the residual load.

For each scenario 7 in TabJI} N simulated series of the recomputed residual load in Eq[IT]are
obtained through a Monte Carlo experiment, along with the corresponding self-generation PVG}M
and new price series P,i’t (Eq. An assessment of the retailers’ risk exposure is thus performed,

as described below.

3.2.3 Risk assessment through Monte Carlo simulations

For each scenario 7, the parameters of the discretized stochastic models in Eq and Eq B 0,4, 1,67 A
(L and P are suppressed to ease notation) are calibrated on the historical time series, after remov-

ing the deterministic components, and are used in the Monte Carlo experiment to simulate the
stochastic components of the residual load and day-ahead prices, according to the actual real-world
probabilities. Hence, the final simulated residual load and price series are obtained by adding to

the simulated stochastic components the fitted long- and short-term seasonal components (Eql6|and

Eq[] respectively) and, in the case of the price series, the third-degree polynomial of the simulated
residual load under each scenario (Eq[8).

The simulations are conducted with N=5,000 trials and over a 2-year period, after assuming for
each trial a burn-in period of 10% of the daily series, that is 73 observations. The resulting self-
generation-price pairs (PVG;M7 P,it) are used to assess the retailers’ exposure to the load risk, and
to the multiplicative risk of load and price, i.e. revenue risk, for different degrees of self-sufficiency.

The conditional value-at-risk metric CVaR(«) is used to assess these risks, and represents the

conditional expectation of the portfolio losses beyond the VaR(«) (e.g. |Alexander, 2008). This
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risk metric accounts for possible heavy tails in the loss distributions and thus has been argued to
be more reliable for risk assessment compared to the VaR metric (e.g. [Rockafellar and Uryasev,
2000). The CVaR metrics of the load and revenue are obtained from the simulated distributions of
the self-generation and day-ahead prices, which satisfies a pre-specified degree of self-sufficiency.
A level of confidence a=99% is assumed and the risk metric is computed on an hourly and daily
basis, so to preserve the seasonal and periodic dynamics of the residual load and price time series,

thus providing an overview of the retailers’ risk exposure according to these dynamics.

3.3 Preliminary Data Analysis

The daily time series of the hourly residual load and day-ahead prices are depicted in chart (a) and
(b) of Figl4] respectively. Different levels and variabilities of the load can be observed across the
hours, which are mainly evident at 8:00 and 14:00 and reflected in more volatile price series. Prices
can be observed to be lower during the summer, when the residual load is reduced.

The descriptive statistics of the residual load factor and day-ahead price time series in Fig[4]are
presented in Tab2] and Tab[3] respectively. The first four moments of the distributions (i.e. mean,
standard deviation, skewness and kurtosis) are reported in the columns two to five. Median, first
and third quartile are shown in columns six to eight. Column nine and ten give the Jarque-Bera
statistics for the null hypothesis of a normal distribution at the 5% level of significance, and the
corresponding p-value. The last column of the tables shows the number of observations, V.

The mean and standard deviation statistics indicate higher and more volatile residual load and
day-ahead prices at 8:00, thus supporting the empirical evidence in Figld] Overall, the skewness
and kurtosis statistics imply a departure from the assumption of a normally distributed residual load
and day-ahead price time series, as also highlighted by the Jarque-Bera statistics. Finally, while the
distribution of the residual load appears to be negatively skewed, and this is consistent across hours,
the distribution of the price series shows a change in its skewness across hours, which becomes pos-
itive at 11:00, 14:00 and 17:00. Hence, an extremely negative residual load is more likely to occur

across the day, and the probability of observing an extremely high or low price changes during the
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day. This evidence has implications for the retailer risk assessment when considering increasing

self-generation and self-sufficiency in the residential sector.
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Table 2: Descriptive statistics of the residual load

Hour Mean SD Skew Kurt Median Pys P;;  Jarque-Bera Prob N
5:00 23251 9263 -0.172 2.284 23760 16919 30147 19.240 0.001 731
8:00 36353 12820 -0.478 2434 37774 28179 46527 37.567 0.001 731
11:00 34070 11807 -0.328 2.390 34743 25987 43080 24.410 0.001 731
14:00 29726 13050 -0.297 2.365 30290 21233 39479 23.013 0.001 731
17:00 33928 12925 -0.054 2.218 33509 25013 44532 18.991 0.001 731

Table 3: Descriptive statistics of the day-ahead prices

Hour Mean SD Skew  Kurt Median Pos P75 Jarque-Bera Prob N
5:00 23230 7.705 -0902 4.103 24.070 19.808 28.280 136.27 0.001 731
8:00 36936 12.729 -0.176 2.756 37.300 29.708 45.440 5.60 0.057 731
11:00 33.049 11.124 0.325 2.727 31.930 25.360 39.948 15.17 0.003 731
14:00 28.777 11.197 0275 2.963 27.710 22.560 34.938 9.28 0.014 731
17:00 35911 12.671 0495 2920 34.150 27.035 44.018 30.04 0.001 731

By affecting the households’” withdrawal of electricity from the grid, self-generation has a direct
impact on the merit-order and the electricity dispatch and distribution, thus affecting the residual
load and day-ahead prices. Furthermore, giving different levels and variability of the households’
and solar load profiles during the day and throughout the year, this impact can be expected to be
time-varying. Therefore, a time-varying exposure of retailers’ to load and revenue risks can be also

expected. The results of the retailers’ risk assessment are presented in the following section.

4 Results

4.1 Decentralized Solar PV Generation and Self-Sufficiency in the Residen-

tial Sector

Fig shows the self-generation through rooftop PV PVG?M in Eq at 10%, 20% and 30% degree
of the annually balanced self-sufficiency in Eq[l] (green, red and blue lines, respectively). Greater
self-generation is observed at 11:00 and 14:00, and during the summer, when solar load is expected

to be higher. The self-sufficiency in Eq[3| is shown in Figlf] Assuming an annually balanced
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degree of 10% of the electricity demand of the residential sector, the self-sufficiency reaches 50%
at 11:00, 14:00, 17:00, due to the low household’ electricity demand and the high solar load. Yet,
when considering a degree of 30%, the self-sufficiency peaks to 200%, i.e. households export
electricity to the grid during these peaks. Therefore, the evidence in Fig[SH6| supports a time-
varying assessment of the retailers’ exposure to the load and revenue risks, as led by increasing

self-generation through PV systems and self-sufficiency in the residential sector.
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Figure 5: Self-generation at 10% (green), 20% (red) and 30% (blue) degree of self-sufficiency
(in MW)
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Figure 6: Self-sufficiency at 10% (green), 20% (red) and 30% (blue) degree
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4.2 Parameter Estimation and Calibration of the Residual Load and Day-

Ahead Prices

The estimated day-ahead price polynomial functions of the residual load (Eq[)), and the fitted
seasonal components of the residual load and price time series (Eql6]and Eq[9)) are reported in Ap-
pendix [A.2] After removing the determinist components, the stochastic component of the residual
load and day-ahead prices (Xj; and Y},; in Eq[7] and EqJI0} respectively) are calibrated on the
German historical data. The calibrated parameters are presented in Tab[] and Tab/5] Overall, the
mean-reverting coefficients 3 are positive and imply similar reverting speed on a daily time-scale
across hours. Higher volatility is observed at 8:00, 11:00 and 17:00 in both the components (%,

JL_ 57P) The parameters A= and A” imply higher probability of jumps at 5:00, reason-

oP ,and o
ably due to the higher impact of wind generation on the residual load and day-ahead prices in the
offpeak hours (Nicolosi, 2010). Finally, the coefficients v* and 7]5 are positive, thus suggesting that
the higher the absolute value of the residual load and prices, the greater is their volatility. These
parameters and the fitted deterministic and seasonal components (Appendix |A.2)) are used in the

Monte Carlo experiment to simulate the residual load and day-ahead prices under different degrees

of the annually balanced self-sufficiency in Eq[I]

Table 4: Calibrated parameters stochastic component residual load

Hour 3L oL Wt oL N\ AL

5:00 0.3821 0.0070 0.0010 0.0142 0.1873 0.1038
8:00 0.4156 0.0089 0.0020 0.0297 0.0644 0.1168
11:00 0.4645 0.0094 0.0011 0.0215 0.0630 0.0970
14:00 0.4443 0.0069 0.0000 0.0128 0.0562 0.0395
17:00 0.3893 0.0076 0.0000 0.0156 0.0644 0.0872

The simulated hourly residual load and day-ahead price duration curves at 30% degree of self-
sufficiency are depicted in Fig[7] (the duration curves at 10% and 20% degree of self-sufficiency
are presented in Appendix [A.3). These curves indicate the daily variability of the hourly residual
load and price series, and are obtained by sorting the observations simulated at each Monte Carlo

trial in a descending order according to the actual series. The actual (black dot) and simulated
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Table 5: Calibrated parameters stochastic component day-ahead prices

Hour aP g s /P NG ~P

5:00 0.6149 0.0045 0.0000 0.0093 0.1468 0.0911
8:00 0.7075 0.0093 0.0040 0.0165 0.0589 0.1286
11:00 0.6326 0.0072 0.0011 0.0147 0.0493 0.0815
14:00 0.6689 0.0071 0.0037 0.0128 0.0438 0.0980
17:00 0.7312 0.0071 0.0030 0.0138 0.0507 0.0888

residual load duration curves are depicted on the left side of the figure; the duration curves of the
corresponding price series are shown on the right.

Greater variability can be observed at 14:00 and 17:00 (Fig[7] charts (d)-(e)) in both the residual
load and price curves, that is when higher are the self-generation and self-sufficiency (Fig[SH6). Yet,
when compared to the duration curves as 10% degree of self-sufficiency (Fig[I5]in Appendix [A.3)),
a merit order effect is noticeable, such that lower residual load and day-ahead prices are observed
for increasing level of self-generation and self-sufficiency from rooftop solar PV systems. This
effect is mostly evident at 8:00 (charts (b)), i.e. when the switch from the off-peak to the peak
time-window occurs. In contrast, a negligible effect is found in the duration curve at 5:00 (charts
(a)). Furthermore, the duration curves at 30% degree of self-sufficiency suggest greater volatility
and more frequent negative peaks of the day-ahead prices for decreasing levels of the residual
load, mainly at 14:00. A performance evaluation of the Monte Carlo simulations is summarized in
Appendix The simulated residual and price series are thus used to compute the CVaR metrics.

These metrics are presented below.

4.3 Assessing the Retailers’ Risk Exposure

The CVaR(99%) load and revenue risk metrics at different degrees of self-sufficiency and decen-
tralized solar PV generation are reported in Fig[8}Fig[I0] The metrics have been computed on a
daily and monthly basis by using the mean values in the period, so as to provide an assessment of
the retailers’ risk exposure while accounting for the seasonality and periodicity of the electricity

demand in the residential sector. The left column of the figures show the load CVaR(99%) and
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unveils the retailers’ average expected hourly load losses (in MW) for different degrees of self-
sufficiency in Figl6] On the right column, the corresponding revenue CVaR(99%) is shown, which
is the average expected hourly revenue losses (in Euro/h) the retailers can face due to an increasing
self-generation from rooftop solar PV systems and self-sufficiency penetration in the residential
sector. Therefore, whilst the load CVaR(99%) assesses the German retailers’ load risk ascribed
to an increasing reduction of the households’ electricity withdrawal from the grid, the revenue
CVaR(99%) assesses the German retailers’ monetary risk associated with this load risk.

On average, the expected load risk is observed to be greater at 11:00 and 14:00 (charts (c)-(d) of
Fig[8}Fig[I0] respectively) and during the period April-September, thus tallying with the dynam-
ics of the self-sufficiency in Figl6l Nonetheless, whilst the expected load risk appears to be more
homogeneously distributed across the week, the expected revenue risk is observed to be higher on
weekdays, mostly from Tuesdays to Thursdays. Finally, non-linear behaviors can also be observed
between expected load and revenue risk, such that, on average, the expected load risk appears to
grow more than the revenue risk at increasing degrees of self-sufficiency.

Overall, the results suggest an increasing exposure of the electricity retailers’ to the load and
revenue risks when considering the impact of a growing self-generation through rooftop solar PV
systems in the residential sector. Moreover, they imply differences in the distribution of these risks
across the week and throughout the week, which have implications when considering different risk

mitigation options for the retailers, as discussed in the next section.

5 Discussion

The self-generation of the residential sector, as driven by rooftop solar PV systems, by affecting the
electricity withdrawal from the grid, represents the main source of load uncertainty for the retailers,
who are unable to transfer this uncertainty to the final consumers. The results in this study imply
higher retailers’ load risk exposure to growing self-generation. Yet, the dynamics of this risk are

linked to the peculiarities of the solar generation, which is weather-dependent and subject to the
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Figure 9: Load (left) and revenue (right) CVaR(99%) at 20% self-sufficiency
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Figure 10: Load (left) and revenue (right) CVaR(99%) at 30% self-sufficiency
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solar irradiation and hour of the day.

Overall, lower load and revenue losses are expected by the retailers at 5:00 and 8:00 and during
the winter, from October to February (Fig[8}{I0] chart (a)-(b)). In contrast, a greater load risk is
observed at 11:00 and 14:00 and during the period from April to September, i.e. when the solar
irradiation is higher and the electricity demand of the residential sector is lower (Figl6). During this
period, the expected load loss at 11:00 and 14:00 hours is 10,000 MW, when considering a 10%
degree of self-sufficiency (Fig[8] chart (c)-(d), left column). The load loss reaches 35,000 MW
when considering a 30% self-sufficiency degree (Fig[I0} chart (c)-(d), left column). This load loss
corresponds to expected revenue losses of 100,000 Euro and 80,000 Euro per hour, at 11:00 and
14:00, respectively (Fig[I0] chart (c)-(d), right column). These load and revenue losses represent
the average expected load and revenue risks faced by the retailers in those specific hours of each
day from April to September, when considering all residential households in Germany. Therefore,
the retailers’ risk exposure varies significantly across the day, which is in line with |Boroumand
et al. (2015) and Boroumand and Goutte (2017)). Yet, compared to their research, in this study a
quantification of both the load and revenue risks is allowed, which also accounts for the weekly
periodicity and seasonal dynamics of the load and price series, thus further highlighting the time-
varying behavior of such risks.

The distribution of load and revenue losses appears to be different and dependent upon the day
of the week. The revenue losses are higher on weekdays, from Monday to Friday. In contrast, the
load losses are observed to spread more homogenously during the week, reasonably reflecting the
weather conditions and the availability of solar irradiation. This different behavior of the load and
revenues losses is consistent across hours and adds further uncertainty to the amount of risk faced
by the retailers’ in the presence of high self-sufficiency.

In the past, the load variability was more predictable by aggregating a large number of con-
sumers. Yet, an increasing self-generation from rooftop solar PV systems raises concerns about the
reliability of households’ standard load profiles, which are based on historical data, to capture the

ongoing technological transformations of the retail electricity market. The results in this study are
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thus in line with previous research, raising concerns about the ability of aggregation and load pro-
filing approaches to reduce the load variability (Hayn et al., 2014; McLoughlin et al., 2015; Sevlian
and Rajagopal, 2018)) and provide an estimate of the load unpredictability and its distribution in
evolving retail markets.

For increasing degrees of self-sufficiency, the retailers’ load risk is found to grow more than the
associated revenue risk, thus implying the presence of some nonlinearities in the relationship be-
tween load and revenue risks, which are mainly evident at 11:00 and 14:00 and during the summer
(FigB}{I0} charts (c)-(d)). Since the load-price correlation directly affects the hedging efficiency
(Kettunen et al.,|2010), risk management strategies assuming a time-invariant relationship between
load and price risk can be inefficient against a multiplicative risk of load and price with increasing
self-generation. This inefficiency has implications for the competitiveness in particular of small
utilities. Whereas financial contracts such as futures, forwards, swaps and options, which are used
for hedging, are settled against day-ahead prices and base, peak and off-peak loads, retail prices
rely on time- and load-based fixed-price contracts and include congestion and network fees, which
are defined by bidding zones and based on local supply and demand. This introduces a signif-
icant basis risk for electricity retailers, as substantial differences can emerge between wholesale
day-ahead prices and retail fixed-price contract, depending upon the load variability. This basis
risk can be further exacerbated by the increasing penetration of unpredictable self-generation from
rooftop solar PV systems, thus implying a higher risk-premium required by the retailers from the
final consumers as a compensation for bearing such a risk.

The self-generation affects the aggregated demand on a real-time basis, thus leading to greater
load uncertainty in the retail electricity market. This uncertainty cannot be reduced through fi-
nancial contracts, which assume constant price and volume across base, peak and off-peak time-
windows. Despite the superior efficiency of the intraday options to manage the increasing uncer-
tainty faced by the electricity retailers’, their liquidity remains an issue (e.g. |Boroumand et al.,
2015; Newbery et al., 2018}, Boroumand and Goutte, 2017). The lack of liquidity can increase

the transaction costs, thus affecting the effectiveness of these financial instruments to manage the
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higher uncertainty faced by the electricity retailers’, and may also imply a higher risk-premium
paid by the consumers.

With increasing penetration of volatile renewable energy sources like rooftop solar PV systems,
demand-side management (DSM) and distributed storage facilities may curb the load variability of
the electricity demand in the residential sector, especially when facilitated by aggregators (Schill
and Zerrahn, [2017; |Saffari et al., 2018). By lessening peak loads and shifting loads from peak to
off-peak time-window, these technologies can reduce the retailers’ load risk exposure. Nonetheless,
DSM and distributed storage technologies require investments whose returns are mainly driven by
their opportunity costs and price variability, and by the consumers’ behavior (Luthander et al.,
2015;|Wozabal et al., | 2016; Schill and Zerrahn, [2017). Hence, they may ultimately increase the re-
tailers’ load risk exposure. Furthermore, in order to avoid grid congestions, time-of-use distribution
network tariffs are adopted, as for instance in Spain and the UK, to facilitate the shift of the elec-
tricity demand from peak to off-peak hours (Li et al., [2016; [Saftfari et al., 2018)). Yet, these tariffs
are determined in advance and discriminated by rates (i.e. prices within different time-windows)
and patterns (duration of each time-window) to reflect energy prices and system loads based on the
information provided by the electricity retailers (Li et al., 2016). The retailers’ load uncertainty due
to increasing self-generation can affect the appropriateness of tariff structures reliant on historical
system load profiles, with implications for the consumers’ energy bill, which are of interest for
policymakers and regulators.

Tariffs are relevant factors for the profitability of investment in RES. RES generation entails a
load forecasting challenge, which has a crucial role in the transition towards a sustainable power
system (Punda et al.,|2017). Load variability, in both supply and demand, has always been present
in power systems. Yet, the integration of RES has increased it, setting new technical and eco-
nomical requirements to guarantee the system flexibility and maintain the supply-demand balance.
Capital intensive and variable RES investments need reliable price signals to enhance efficiency. In
this respect, price-based support schemes, such as feed-in-tariffs (FIT), play a key role in stabiliz-

ing the generators’ revenue flow and reducing their investment risks (Tietjen et al., 2016; |Pineda
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et al., 2018)). Nonetheless, the choice of the optimal renewable support schemes has been driven
mainly by the objective of reducing the generators’ load and revenue risk (Pineda et al., 2018).
While eligible generators can transfer the cost (and risk) of renewable generation to the retailers in
the wholesale market, in the retail market the regulatory body determines the cost to be transferred
to the final consumers (Punda et al., 2017). Renewable support schemes can thus entail a regulatory
risk, which depends upon the renewable load variability, and can affect the revenue and load risk
faced not only by generators and equity investors in long-term capital intensive projects, but also by
retailers when increasing levels of self-generation in the residential sector are considered. Uncov-
ering the retailers’ risk exposure to rooftop solar PV systems has thus implications for consumers,

investors, generators and policymakers.

6 Conclusions

In this paper, an assessment of the electricity retailers’ risk exposure to increasing degrees of self-
generation from rooftop solar PV system is presented, which is based on the Monte Carlo simula-
tions and the CVaR(99%) risk metric. The German market is considered, since Germany is at the
forefront of solar PV installations.

Notwithstanding the considerably high economic value of solar PV for the energy system, the
risk assessment in this paper implies greater uncertainty faced by the retailers in the presence of
an increasing penetration of rooftop solar PV systems, especially when accounting for their inabil-
ity to transfer load and revenue volatility risks to the consumers. Traditional financial derivatives
are mainly devoted to long-term hedging. The increasing need of shorter-term flexibility, while
highlighting the importance of intraday and balancing markets, questions the suitability of the tra-
ditional financial products, in particular standard futures and forward contracts, in providing this
flexibility, and suggests the need of different derivatives products for mitigating risks in evolving
electricity markets. This would imply a shift in the hedging approach, which is of relevance for

market-players and policymakers and is thus left for future research.
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The increasing need of the retailers for real-time portfolios re-balancing has implications when
considering the efficiency and cost of different risk mitigation options - i.e. financial derivatives,
physical hedging, tariffs - in the context of a rapidly evolving decentralized electricity market.
These options affect investment decisions and thus the power system availability of ensuring ade-
quate flexibility and reliability. Their assessment is thus left as an avenue for future research.

Whilst the use of a robust simulation technique in this paper has provided useful insights, there
are some limitations to the analysis undertaken. A time-invariant price-load relationship has been
assumed on an hourly basis, which does not account for adjustments in the link between load and
price risk over time due to wholesale and retail price differentials. Furthermore, our analysis does
not consider distributed storage or demand response technologies. Such technologies affect house-
holds’ grid load profile and, therefore, if uncontrolled, may exacerbate the unpredictability of the

retailers’ load profile. It is therefore important to address this issue in future research.
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A Appendixes

A.1 Cross-correlation analysis

A cross-correlation analysis is performed to support the assumption of independence between the
residual load and price stochastic components. The results are shown in Fig[TT] where the cross-
correlation functions, along with their 90% confidence intervals for each hourly residual load-price
pair are depicted. Overall, the majority of the empirical cross-correlations are within the 90%
confidence interval, thus supporting the assumption that the stochastic component of the residual

load and day-ahead prices can be calibrated independently.
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Figure 11: Cross-correlation functions of the stochastic components of the residual load and
day-ahead prices (red dot) and 90% confidence interval (blue bands)

A.2 Fitted seasonal and deterministic components of the residual load and

day-ahead prices

The polynomial function provides a reasonable fit of the deterministic function f(Lj,) in Eq
which appears to take a concave-convex shape at 11:00, 14:00, 17:00. A third-degree polynomial

is thus assumed at these hours. In contrast, a two-degree polynomial is found to better fit the load-
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price relationship at 5:00; finally, a linear relationship is observed at 8:00. In Fig[I2] the day-ahead
prices against the residual load are plotted (blued dot), along with the fitted polynomial functions

of the residual load (red line).
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Figure 12: Prices vs. residual load (blue dot) and polynomial function (red line)

Fig[13] - chart (a) shows the residual load time series (black line) and its estimated long-term
seasonal component (LTSC, red line) at different hours. Chart (b) depicts the stochastic component
of the residual load (X}, in Eq[7) after removing the long- and short-term seasonal components
and suggests a mean-reverting behavior of the series, likewise the presence of jumps. The residual
component of the day-ahead price time series, after removing the deterministic function of the

residual load, is shown in Fig[14]- chart (a) (black line), along with the estimated long-term seasonal
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component (LTSC, red line). Chart (b) of Fig[I4] shows the stochastic component of the residual
price after removing the long- and short-term seasonal components (Y}, ; in Eq[I0) and implies a

mean-reverting behavior.
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(a) Actual residual load (black line) and LTSC (red line)
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Figure 13: Residual load: LTSC and stochastic components (in MW)
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Figure 14: Residual day-ahead prices: LTSC and stochastic components (Euro/MWh)

A.3 Simulated residual load and day-ahead prices at different degrees of

self-sufficiency
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Figure 15: Actual (black dot) vs simulated residual load (left) and day-ahead price (right)
duration curves: 10% self-sufficiency
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Figure 16: Actual (black dot) vs simulated residual load (left) and day-ahead price (right)
duration curves: 20% self-sufficiency
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A.4 Performance evaluation Monte Carlo simulations

Tabl6] and Tab[7] present some error measures comparing the observed and simulated residual load

and price time series. The average root mean square error (RMSE) and the average mean absolute

percentage error (MAPE) are reported in columns two and three. Column four shows the average

linear pairwise correlation coefficient R. The last two columns of the tables show the median

values of the first and third quartile of the simulated series (FPs5, Pr5). While the RMSE, MAPE

and R measures are parametric pairwise measures, the quartiles are non-parametric statistics, thus

capturing dynamics in the distribution of the simulated series.

Table 6: Error Measures: Residual Load

5:00
8:00
11:00
14:00
17:00

RMSE

9301
10571
10534
10499
9592

MAPE (%)

80.08
35.30
59.95
69.58
33.46

R
0.519
0.672
0.617
0.684
0.731

Pos
17650
28722
26540
21238
25065

Prs
30088
45735
42674
39245
43861

Table 7: Error Measures: Day-Ahead Prices

RMSE MAPE (%) R Py Prs
5:00  9.09 620.7 0.38 19.05 28.79
8:00 12.69 148.8 0.56 2944 4642
11:00 12.29 232.1 0.44 25.72 40.55
14:00 13.38 190.1 0.48 21.66 36.08
17:00 11.91 33.49 0.61 2742 4436
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