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Abstract 
This paper presents updated and newly derived estimates using various impact models, 
including biophysical and econometric models, to evaluate the direct economic costs of 
climate change in Ireland. The estimates are completed for five climate impacts: sea level rise, 
heat effects on labour productivity, human health, agricultural production, and river flooding.  
The key findings include (1) Under a moderate warming scenario of SSP2-RCP4.5, with a global 
mean sea level rise of 0.56 meters, the projected annual cost for the year 2050 would be 
around €2 billion (2) Rising temperatures and humidity within workplaces can decrease labour 
productivity (3) The projected changes in climatic conditions are expected to benefit major 
crops such as barley and wheat moderately, primarily due to the beneficial effects of CO2 
fertilisation (4) The projected annual economic damage resulting from river flooding is 
expected to increase in the future in the absence of additional adaptation measures, and (5) 
Higher temperatures can contribute to an increase in emergency hospital admissions. It is 
essential to note that the analyses exclude numerous other impact categories, such as 
ecosystem services and biodiversity due to the lack of appropriate data. Therefore, these 
results should be interpreted as a first step to monetise impacts for Ireland, where additional 
research is needed.  

 

  



1 Introduction 
In 2023, the Earth experienced its hottest year ever recorded since the 1880s. The year was 
marked by several extreme weather events, including scorching heatwaves that swept across 
Europe and North America and devastating wildfires that ravaged regions like Canada and 
Greece. July 2023 was particularly noteworthy as the hottest July globally ever recorded, with 
a monthly average temperature of 16.95°C. This significantly surpassed the previous record 
set in July 2019 (Copernicus Climate Change Service, 2023). While attributing single weather 
events to climate change remains a complex task, it is extremely likely that human activities, 
particularly the burning of fossil fuels and deforestation, have played a dominant role in 
driving the surge in global temperatures and the disruptive patterns in weather and climate 
being experienced (IPCC, 2013; Desmond et al., 2017). This highlights the pressing need to 
step up action on mitigation and adaptation at global and national levels. 

Policy tools to combat climate change can be broadly divided into mitigation and adaptation. 
Mitigation focuses on reducing greenhouse gas emissions and increasing carbon sinks, hence 
limiting the level of climate change. In contrast, adaptation focuses on addressing the negative 
effects of a given level of climate change and taking advantage of any opportunities that may 
arise from these changes (IPCC, 2022). In terms of mitigation, Ireland has taken proactive steps 
by implementing ambitious climate legislation to contribute to global efforts to reduce 
anthropogenic greenhouse gas (GHG) emissions. The Climate Action and Low Carbon 
Development (Amendment) Act 2021 lays out a pathway to transition the country to a low-
carbon society and economy by 2050. In line with this commitment, the government 
introduced carbon budgets and sector-specific emissions limits in 2022, with the primary goal 
of achieving a 51% reduction in GHG emissions by 2030 in comparison to 2018 levels. Also, 
the National Adaptation Framework (NAF) sets out a roadmap to build a climate-resilient 
economy and society by prioritising and mainstreaming climate adaptation actions into all 
national plans and policies. Whilst these policies are consistent with international agreements, 
such as the Paris Agreement, realising their ambitious objectives requires significant economic 
and societal investments. Therefore, it is important to assess and understand how climate-
induced physical damages translate into economic costs to inform the optimal design of 
policies. 

The economic impacts of climate change exhibit a dual nature with respect to their timing. 
They encompass immediate, short-term damages caused by extreme weather events and 
long-term effects on the economy’s overall productive capacity resulting from gradual shifts 
in climatic conditions (Dell et al., 2012; Kalkuhl & Wenz, 2020). The gradual changes in 
temperature and precipitation patterns are important factors that influence the productivity 
of sectors predominantly reliant on outdoor conditions, such as agriculture and construction 
(Kjellstrom et al., 2009). Additionally, extreme weather events can lead to the loss of capital 
assets due to river floods and rising sea levels, necessitating the need for insurance coverage 
(Botzen & Van Den Bergh, 2008; Botzen et al., 2009). Furthermore, both types of damage, 
whether immediate or gradual, can have adverse effects on human health and ecosystems. 
For instance, they can result in workers facing increased exposure to heat-related stress, and 
cause water quality issues stemming from heavy rainfall and flooding events. When all these 



effects are combined, they result in reduced wealth and well-being when compared to a 
scenario where climate change impacts are absent. 

To estimate the damages caused by climate change, economists use what are known as 
“damage functions”. These mathematical relationships link specific climate-induced changes 
(like rising temperatures or sea-level increases) to real-world consequences, such as reduced 
crop yields, increased flooding, or health problems (Roson & Sartori, 2016; Auffhammer, 
2018). In essence, economists calculate the damages from climate change by comparing the 
economic costs and benefits in a reference period without climate change, to a counterfactual 
future impacted by climate change. 

The available evidence indicates that climate change is likely to have an impact on economic 
growth (Dell et al., 2014; Burke et al., 2015; Carleton & Hsiang, 2016), human well-being 
(Hsiang et al., 2013; Deschenes, 2014) and will also have substantial effects on technology, 
both in terms of efforts to reduce emissions and adapt to changing conditions. In Ireland, prior 
studies have examined the impact of climate change on various aspects, including agriculture 
(Holden et al., 2003; Flood, 2013), coastal flooding and erosion (Devoy, 2008; Flood & 
Sweeney, 2012; Flood et al., 2020; Paranunzio et al., 2022), marine ecosystems (Cheung et al., 
2012), and wind energy (Doddy Clarke et al., 2022). However, there are gaps in assessments 
specific to Ireland, particularly in examining multiple impacts simultaneously. In addition, 
some of the existing estimates have become outdated due to advances in knowledge, data, 
and research methods. Furthermore, certain studies provide estimates for broader European 
regions (see, for example, Gosling et al., 2018; Ščasný et al., 2019; Szewczyk et al., 2021), which 
do not accurately capture Ireland’s unique characteristics. Therefore, this paper aims to 
update and provide Irish-specific estimates for various impact categories, including the impact 
of heat stress on labour productivity and human health. 

A range of impact models were employed in the analysis. A process-based approach was used 
to assess agricultural impacts, combining agronomic and economic mechanisms to determine 
the direct effects of climate change on crop productivity and farmers' responses regarding 
land use and crop choices. The latest coastal assessment model, DSCIM-Coastal (Data-driven 
Spatial Climate Impact Model – Coastal Impacts) was employed for coastal impacts. DSCIM-
Coastal enhances previous global coastal assessment models with current knowledge and up-
to-date local data on socioeconomic and physical conditions along coastlines worldwide. In 
the case of river flooding, the GLOFRIS model, a grid-based global framework that covers all 
major river basins globally, was used. Finally, econometric analyses were conducted to 
evaluate the impact of occupational heat stress on labour productivity and variations in 
temperature on in-patient hospital admissions. It is important to note that numerous other 
impact categories, due to the lack of suitable data and/or methods, are not included in this 
analysis, such as ecosystem services, mental health impacts, biodiversity, and tourism. Hence, 
these results should be interpreted as the lower bound of impacts. The analysis is structured 
into five distinct categories, each addressing a specific aspect of climate change impacts in 
Ireland. 



2 Impacts of Coastal Flooding 
2.1. Introduction 
The consequences of climate change, such as rising sea levels, heightened occurrences of high 
tides, and increased storm-surge flooding, have significant impacts on social, economic, and 
ecological systems (Hinkel et al., 2013). As ocean temperatures rise, water expands, and the 
melting of ice sheets, polar ice caps, and glaciers adds further volume to ocean basins (Fox-
Kemper et al., 2021). The global mean sea level has risen about 210–240 mm since 1880. In 
2022, it was 101.2 mm above 1993 levels, making it the highest recorded average in the 
satellite record (i.e., 1993-present) (Lindsey, 2022). 

Furthermore, it is projected that by the end of the century, the global mean sea level is likely 
to rise at least one foot (0.3 meters) above 2000 levels, even if greenhouse gas emissions 
follow a relatively low pathway in the coming decades (Lindsey, 2022). This represents a 29% 
increase compared to the contribution between 2001 and 2011 and an approximately 700% 
increase compared to the period between 1992 and 2001 (Meredith et al., 2019). A recent 
National Oceanic and Atmospheric Administration (NOAA) report confirms that the rate of sea 
level rise is accelerating and projects a 305 mm increase by 2050. The report also notes that, 
on average, sea levels have risen approximately 203 mm since 1880, with approximately 60 
mm occurring in the last 25 years (Devoy, 2015; Sweet et al., 2022). 

Ireland is particularly vulnerable to sea level rise, with major cities like Dublin, Cork, and 
Galway facing potential damage. Coastal flooding, depletion of wetlands, erosion, and 
sediment accumulation are all consequences of sea level rise (SLR). For example, a 1-meter 
SLR in Ireland could put approximately 30% of coastal wetlands at risk of disappearing (Devoy, 
2008). Flood & Sweeney (2012) estimated that around 350 km2 of coastal land is at risk in a 1-
meter SLR scenario, with an estimated economic cost related to property insurance claims 
reaching approximately €1.1 billion. They also projected that if sea levels were to rise by 3 
meters, approximately 600 km2 of coastal land would be vulnerable, and the potential 
economic cost would increase to €2.1 billion. The SLR scenarios in this study were generated 
using the Irish digital terrain model (DTM) and were combined with a geocoded list of Irish 
property addresses and historical data on flood insurance claims to estimate the potential 
economic impacts. However, it is worth noting that these estimates were based on a relatively 
straightforward method and did not account for diverse growth trajectories of factors such as 
human population and capital assets or potential adaptation strategies. 

To address these limitations, global coastal models are developed to incorporate assumptions 
or forecasts regarding the trajectories of physical risks (including SLR and extreme sea levels), 
adaptive decision-making (such as the construction of protective barriers), and socioeconomic 
variables (such as human population and capital assets) over time. Furthermore, these models 
incorporate comprehensive geographical information about coastlines, including 
measurements of coastline length, elevation, land areas, and coastal ecosystems (Depsky et 
al., 2023). In this context, the latest coastal assessment model, known as DSCIM-Coastal (Data-
driven Spatial Climate Impact Model – Coastal Impacts), was used to provide updated 



assessments of potential losses resulting from SLR under various climate change scenarios in 
Ireland. 

2.2. Methods 
Over the last three decades, significant efforts have been made to develop guidelines and 
methodologies to assess coastal vulnerability on a global scale (Hoozemans et al., 1993; Hinkel 
& Klein, 2009; Depsky et al., 2023). Early global vulnerability assessments had several 
drawbacks including (i) neglecting biophysical, geophysical, and socioeconomic dynamics and 
feedback, (ii) relying on arbitrary or simplistic adaptation assumptions, and (iii) overlooking 
socio-economic aspects (Gornitz et al., 1994; Hinkel & Klein, 2009). To address these 
shortcomings and to establish a standardized approach and dataset for assessing coastal 
vulnerability at subnational, national, regional, and global scales, the EU-funded project 
DINAS-COAST (Dynamic and Interactive Assessment of National, Regional, and Global 
Vulnerability of Coastal Zones to Sea-Level Rise) developed DIVA (i.e., Dynamic and Interactive 
Vulnerability Assessment). Therefore, to provide context for the choice of the DSCIM-Coastal 
model, brief descriptions are provided of the models that influenced its development, 
specifically DIVA and the Coastal Impacts and Adaptation Model (CIAM). 

2.3. DIVA 
DIVA serves a dual role, acting both as a modelling approach and a tool for evaluating 
vulnerability (Hinkel & Klein, 2009). In its capacity as a modelling approach, DIVA provides a 
systematic means to integrate knowledge from various disciplines, including the natural, 
social, and engineering sciences. As a vulnerability assessment tool, it operates as dynamic, 
interactive, and adaptable software. This tool enables users to generate quantitative 
information related to a wide range of coastal vulnerability indicators. Users have the flexibility 
to select from a variety of climatic and socioeconomic scenarios and adaptation strategies. 
Moreover, DIVA functions on a global scale, covering all coastal nations at the national, 
regional, and global levels. 

The DIVA model relies on the DIVA coastal database, which was established in conjunction 
with the DINAS-COAST project. This database employs a linear data structure to provide 
consistent base data for the model. It subdivides the coastlines of the world (excluding 
Antarctica) into over 12,000 linear segments of varying lengths. These segments are 
associated with physical, ecological, and socioeconomic parameters, allowing for a 
comprehensive analysis of their impacts. 

In one of its early applications, Hinkel et al. (2014) applied the DIVA model and database to 
compute the global costs associated with coastal flooding damage and adaptation to sea level 
rise in the 21st century. The analyses revealed that the choice of protection or adaptation 
strategy had a significantly greater influence on flood-related damages by the end of the 
century than variations in climate and socioeconomic scenarios. However, due to data 
constraints, their study only considered a single adaptation measure, specifically, the 
construction of dikes. 



2.4. CIAM 
Building upon the work of Hinkel et al. (2014), Diaz (2016) introduced the Coastal Impact and 
Adaptation Model (CIAM), a global modelling tool aimed at estimating costs and adaptation 
strategies for each segment defined in the DIVA database. A significant innovation in CIAM 
was its capacity to enable each segment to choose between the construction of protective 
dikes, as previously done by Hinkel et al. (2014), and the adoption of managed or reactive 
retreat strategies. 

The architecture of CIAM was designed to capture fundamental aspects of local adaptive 
decision-making likely to be used by coastal communities worldwide. Its goal was to establish 
an optimization framework that could be applied locally, whilst maintaining global 
applicability. To manage the complexity of solving dynamic programmes for numerous 
independent coastline segments, Diaz (2016) simplified adaptation choices into discrete 
decisions customized to local conditions. CIAM addressed six categories of costs related to 
relative sea-level rise (RSLR) and extreme sea levels (ESLs): (a) expenses associated with 
immobile capital or land inundation, (b) capital damages related to ESLs, (c) costs linked to 
mortality, (d) outlays for protection (e.g., infrastructure), (e) costs of relocation, and (f) 
wetland loss. Protective measures in CIAM included the construction of dikes at various ESL 
heights, whilst retreat strategies involved vacating land areas affected by local sea levels or 
within floodplains of varying ESL frequencies. CIAM operates in discrete time intervals, 
referred to as “adaptation planning periods,” during which segments adjust their protection 
or retreat strategies based on the maximum projected RSLR. Additionally, there is an option 
for a “no planned adaptation” choice, which permits a reactive rather than proactive retreat 
strategy. However, CIAM has not seen widespread adoption, primarily due to its development 
within the closed-source General Algebraic Modelling System (GAMS) platform. 

2.5. DSCIM-Coastal 
Depsky et al. (2023) recently expanded upon Diaz’s (2016) approach by modifying and 
enhancing the decision framework of CIAM, using an entirely new set of global data inputs in 
place of the previous DIVA dataset, which is no longer publicly accessible. Additionally, they 
employed an open-source programming language, specifically Python, for the implementation 
of their model. The modelling platform they created, known as DSCIM-Coastal (Data-driven 
Spatial Climate Impact Model – Coastal Impacts), is a component of the larger Data-driven 
Spatial Climate Impact Model (DSCIM) architecture. DSCIM-Coastal consists of two primary 
parts: SLIIDERS (Sea Level Impacts Input Dataset by Elevation, Region, and Scenario) and 
pyCIAM (Python-based CIAM). SLIIDERS manages the collection, harmonization, and 
aggregation of updated physical and socioeconomic input datasets for each coastal segment, 
while pyCIAM is the modelling platform itself, utilizing the data gathered and processed by 
SLIIDERS. 

The SLIIDERS dataset shares similarities with DIVA in that it covers a diverse range of variables 
relevant to modelling coastal impacts across various coastal segments. However, a key 
distinction is that unlike DIVA, which lacks public availability, SLIIDERS and its components are 
accessible through open-access licenses with the advantage that other researchers can 



replicate coastal damage analyses. Moreover, SLIIDERS incorporates updated topographic, 
geographic, and socioeconomic input datasets such as improved coastal digital elevation 
models (DEMs) and more refined socioeconomic growth projections. 

pyCIAM is an open-source and computationally efficient modelling platform designed for 
making adaptation decisions at the segment level. It builds upon the original CIAM framework 
by Diaz (2016) and includes several improvements: (i) updated data, (ii) improved model 
representation, (iii) open-source accessibility, and (iv) enhanced computational efficiency. The 
model is designed to work with the SLIIDERS dataset and sea-level rise (SLR) projections. In 
this context, the DSCIM-Coastal model was used to generate revised estimates of potential 
damages resulting from SLR within diverse climate change scenarios in Ireland. 

2.6. Results and discussion 
To assess the potential impacts of climate change-induced sea-level rise in Ireland, various 
scenarios and timeframes were analysed. We use the Kopp et al. (2014) sea level rise scenarios 
as input into our analysis. These scenarios account for different combinations of future 
emissions and underlying physical processes that influence sea levels. Table 2.1 shows the 
estimated global mean sea levels (g.m.s.l.) by warming scenario by 2050 and 2100. Table 2.1 
is based on future climate scenarios, and uncertainties persist in these climate projections, 
driven by variations in greenhouse gas emissions, climate sensitivity, and regional climate 
patterns. Therefore, the table includes the 5th, 50th and 95th percentile estimates.  

Table 2.1. Values for median g.m.s.l. rise between 2005 and 2050/2100, Kopp et al. (2014) 

 Scenario g.m.s.l.  
in 2050 (m) 

g.m.s.l.  
in 2100 (m) 

5th percentile 
RCP2.6 0.18 0.30 
RCP4.5 0.18 0.35 
RCP8.5 0.21 0.51 

50th percentile 
RCP2.6 0.25 0.50 
RCP4.5 0.26 0.60 
RCP8.5 0.29 0.77 

95th percentile 
RCP2.6 0.33 0.82 
RCP4.5 0.35 0.94 
RCP8.5 0.38 1.19 

Notes: The g.m.s.l. values are expressed as changes compared to g.m.s.l. in 2005 

Before discussing the findings, it is worth mentioning that they are based on all the coastlines 
of Ireland, corresponding to 22 administrative regions in the DSCIM-Coastal model. In 
addition, the four categories of costs are discussed: inundation, wetland, capital stock, and 
population mortality. Inundation cost refers to the assessed value of land and immobile capital 
lost due to inundation, whilst wetland cost refers to the valuation of lost wetlands resulting 
from either SLR or protective measures. Capital stock cost refers to the valuation of capital 
loss incurred during extreme sea level events, and population mortality refers to the estimated 
annual costs of mortality arising from such events, with death equivalents valued using a Value 



of Statistical Life (VSL) framework1. Table 2.2 provides an overview of these annual costs under 
the no additional adaptation scenario for the four types of costs in the years 2050 and 2100, 
considering the five AR6 SLR scenarios. 

Table 2.2. Annual costs of climate-driven SLR in Ireland 

 2050 2100 
SLR scenario RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 
Wetlands 0.01 0.02 0.04 0.01 0.03 0.06 
Inundation 0.43 0.53 0.69 0.83 1.06 1.16 
Relocation 0.55 0.72 0.98 0.93 1.19 1.04 
Storm Capital 0.56 0.58 0.64 1.57 2.68 2.74 
Storm Population 0.44 0.45 0.50 1.24 2.07 2.10 
Total 2.00 2.31 2.85 4.58 7.03 7.11 

Source: DSCIM-Coastal model. Notes: Costs are expressed in billions of constant 2019 PPP Euros2, including the 
cost of existing coastal protection measures, and are based on the IIASA socioeconomic trajectory. 
 

Table 2.2 indicates that costs increase and continue over time as sea levels rise. Costs related 
to capital stock and population mortality are higher than those associated with inundation 
and wetlands, which suggests that the Irish shorelines have high population density and 
capital investment. In the year 2050, the projected annual cost considering all five types of 
costs, under a moderate warming scenario of RCP4.5, is approximately €2.3 billion without 
additional adaptation measures. By the end of this century, under the same scenario, it is 
expected to reach €7 billion. These findings are consistent with previous studies, such as 
Devoy (2008) and Flood & Sweeney (2012) and confirm that Ireland is vulnerable to the 
impacts of climate-induced sea level rise. 

2.7. Conclusion 
This section investigated the potential damages from SLR within diverse climate change 
scenarios in Ireland using a state-of-the-art coastal assessment model, DSCIM-Coastal (Data-
driven Spatial Climate Impact Model – Coastal Impacts). This model enhances previous global 
coastal assessment models with current knowledge and up-to-date local data on 
socioeconomic and physical conditions along coastlines worldwide. The estimations indicate 
that, under a moderate warming scenario of SSP2-RCP4.5, with a global mean sea level rise of 
0.56 meters, the projected annual cost for the year 2050 would be around €2 billion. By the 
close of this century, under the same scenario, this cost is expected to rise to approximately 
€7 billion.    

It is essential to note that DSCIM-Coastal, like any modelling tool, relies on certain assumptions 
and may contain uncertainties that can affect the accuracy of its predictions. For example, it 
incorporates assumptions about future population growth, urbanisation, and land use change 
to estimate exposure and vulnerability to coastal flooding. Variations in socio-economic 

 
1 The annual cost of population mortality was calculated by multiplying the exposed area by the population density, scaled 
by a flood mortality factor of 0.01 times the national value of statistical life (Diaz, 2016). 
2 We have converted the currency from USD2019 to Euro2019 using the exchange rate of $1 for €1. 



development pathways and policy decisions can affect the accuracy of these assumptions and 
introduce uncertainties into the model outputs. In addition, the model assumes a certain level 
of adaptation, such as the presence of coastal defences or land use planning measures, to 
reduce vulnerability to coastal flooding. Uncertainties in the effectiveness, timing, and 
implementation of these adaptation measures can affect the model’s projections of future 
flood risk. Lastly, DSCIM-Coastal has inherent limitations in its ability to represent complex 
coastal processes and interactions, such as localised storm surge effects, wave overtopping, 
or interactions between coastal ecosystems and geomorphology. These limitations can affect 
the accuracy and reliability of the model’s predictions, particularly in areas with unique coastal 
characteristics or complex topography. 

3 Impacts on Labour Productivity 
3.1. Introduction 
There are two major pathways by which climate change impacts labour productivity. The first 
of these pathways involves the number of hours worked by individuals, often referred to as 
labour supply (Graff Zivin & Neidell, 2014; Dasgupta et al., 2021; Somanathan et al., 2021). 
Sectors with high exposure to extreme temperatures, such as agriculture, are particularly 
vulnerable to this effect. When temperatures rise beyond specific thresholds, workers may 
reduce their working hours to safeguard their long-term health, steering clear of the risks 
associated with heat exhaustion or heat stroke. This not only affects individual income and 
economic productivity but can also lead to labour shortages, disrupting various industries 
reliant on manual labour.  

In addition to affecting the number of working hours, climate change has a significant 
influence on the quality and efficiency of work during the hours employees are on the job 
(Kjellstrom et al., 2009; Sahu et al., 2013; Dasgupta et al., 2021). Heat stress is one of the most 
prominent factors contributing to this decline in productivity. As temperatures increase, 
workers exposed to extreme heat conditions tend to slow their work pace and take more 
frequent breaks to rehydrate and cool down. This hinders the overall output and efficiency of 
labour, particularly in sectors like construction, where physical exertion is substantial. 

Crucially, the dissipation of heat generated during work plays a pivotal role in maintaining 
workers’ productivity and well-being (Kjellstrom et al., 2009; Li et al., 2016). The human body 
must effectively release heat to regulate body temperature and prevent heat stress. This 
process is contingent on various factors, primarily the ambient temperature, but also 
influenced by humidity and wind speed. With climate change leading to hotter and more 
unpredictable weather patterns, the challenges in managing heat stress are amplified, further 
heightening the reduction in labour productivity across numerous industries.  

Empirical evidence drawn from occupational health and environmental economics 
underscores the considerable impact of heightened temperatures on the average productivity 
of the labour force. The body of occupational health research has predominantly focused on 
the adverse consequences of temperature elevation on labour efficiency, primarily within 



distinct occupational settings such as factory facilities and outdoor labour scenarios. Most of 
these research studies primarily rely on the Wet Bulb Globe Temperature (WBGT), a heat 
exposure metric that combines temperature, humidity, wind speed, and solar exposure. 
Higher WBGT values signify an increased thermal stress level (Lemke & Kjellstrom, 2012; 
Szewczyk et al., 2021). For instance, Sahu et al. (2013) shed light on the adverse effects of 
elevated heat exposure during rice harvesting in India, focusing on the relationship with 
WBGT. Their findings underscore that even a one-degree increase in heat exposure leads to 
an approximate 5% reduction in work productivity. Similarly, Li et al. (2016) uncovered a 
noticeable decline in the actual working hours of rebar workers in China, with an average 
decline of 0.57% for every 1oC rise in WBGT. Zhang et al. (2023) also focused on the Chinese 
construction sector, but their findings unveiled a non-linear relationship between temperature 
and labour productivity, with peak productivity occurring at an average temperature of 25°C. 
Furthermore, Somanathan et al. (2021) identified that individual workers and worker teams 
experience diminished output during hot days and weeks. Their study combined several 
microdata sets and a nationally representative panel of manufacturing facilities in India to 
quantify the impact of elevated temperatures on labour. However, generalizing the findings of 
these studies across multiple working environments requires caution, given their roots in 
specific and distinct work environments. 

Economics studies predominantly utilise panel data techniques to identify the relationship 
between temperature, heat stress, and labour productivity. The central objective is to furnish 
robust findings applicable across multiple working environments and geographical regions 
(Zivin & Neidell, 2010; Dell et al., 2012; Burke et al., 2015; Kalkuhl & Wenz, 2020). For instance, 
Zivin and Neidell (2010) leveraged exogenous temperature variations within U.S. counties over 
time to assess the impact of climate change on the allocation of time. Their study revealed 
that in highly exposed sectors, labour supply diminishes as temperatures increase, and 
outdoor leisure activities decline as well. Kalkuhl and Wenz (2020) also showed that 
temperature exerts discernible effects on productivity levels, with greater damage incurred in 
tropical and economically disadvantaged regions. Moreover, Hsiang (2010) identified that 
even short-term temperature increases are linked to significant declines in economic output 
across industries previously deemed less vulnerable to climate change. Additionally, 
Schleypen et al. (2019) observed that both gradual temperature changes and extreme heat 
events adversely affect industrial and construction labour productivity within the European 
context.  

The current research on Ireland (in multiregional studies) suggests that climate-induced heat 
stress is unlikely to significantly impact worker productivity (Roson & Sartori, 2016; Gosling et 
al., 2018; Schleypen et al., 2019; Szewczyk et al., 2021). These findings are mainly based on 
exposure-response functions (ERFs) underpinned by occupational health standards that 
specify productivity loss thresholds. However, most ERFs were developed in environments and 
geographic regions with climatic conditions that differ markedly from those in Ireland (see, for 
example, Sahu et al., 2013; Li et al., 2016). Hence, there is a growing argument that, given 
Ireland’s temperate climate and the population’s limited acclimatization to higher 
temperatures, labour productivity may decline as temperatures rise, even below the 
established thresholds. 



In this study, we investigated the impact of Wet Bulb Globe Temperature (WBGT) on labour 
productivity in Ireland, incorporating seasonal variations and interaction effects. Our model is 
consistent with previous studies such as Hsiang (2010), Zivin and Neidell (2010), Dell et al. 
(2012), Burke et al. (2015), and Coronese et al. (2019). However, unlike these studies, we 
employed a time series regression approach where the dependent variable is labour 
productivity per capita growth rate. This approach helps address potential non-stationarity 
issues and allows for examining short-term fluctuations in labour productivity. As such, 
excluding certain relevant variables, like technological advancements and investments in 
physical capital due to data limitations, is unlikely to significantly affect the observed 
relationships between variables in our model. The results suggest that in Ireland, rising 
temperatures and humidity levels in work environments can lead to reduced productivity even 
when below the recognised international heat stress threshold. Specifically, the findings 
indicate that a one-degree increase in outdoor WBGT corresponds to a 0.87% decline in labour 
productivity. When WBGT is held constant, there are slight seasonal variations in productivity, 
with the highest levels observed in autumn and the lowest in winter. However, when 
examining the interaction between WBGT and seasons, it was found that increased 
temperatures during the winter months could significantly enhance worker productivity in 
Ireland. In contrast, higher temperatures and heat stress during the summer could harm 
productivity. 

3.2. Data 

3.2.1. Economic data 
The economic data used in this study was obtained from the Central Statistics Office (CSO) and 
covers Gross Value-added (GVA) and employment across production sectors in Ireland. The 
data, spanning from 1998 to 2022, is reported at a quarterly frequency. GVA is the output 
value at basic prices minus the cost of intermediate consumption, assessed at purchasers’ 
prices. Employment is measured by the number of individuals engaged in the workforce. To 
calculate labour productivity, expressed as GVA per capita, the GVA was divided by the working 
population. 

3.2.2. Climate data 
To compile historical climate data, we used Met Éireann station-level data measured at a daily 
frequency, covering 1km cells. We aggregated the data, taking into account the population 
within each 1km cell. This allowed us to derive national-level averages for each climate 
variable needed to compute WBGT, considering population-weighted values. Subsequently, 
we transitioned the daily frequency of this population-weighted national data to a quarterly 
frequency to align it with the labour productivity data. 

3.3. Methods 

3.3.1. Computation of WBGT 
WBGT is a heat stress indicator grounded in physiology, used to evaluate the combined impact 
of temperature, humidity, wind speed, and solar radiation on human well-being and health, 



especially in hot and humid conditions (Lemke & Kjellstrom, 2012; Dunne et al., 2013). It offers 
a more precise assessment of the potential risks of heat-related illnesses in settings where 
individuals are exposed to high temperatures and must take precautions to prevent heat-
related health issues. This index takes into consideration three primary components: the 
natural wet bulb temperature (Tnwb, which accounts for air humidity and is measured using a 
wetted thermometer exposed to wind and heat radiation on-site), the black globe 
temperature (Tg, accounting for the influence of direct sunlight and measured within a 150 
mm diameter black globe), and the dry bulb temperature (Ta, indicating air temperature and 
measured with a standard thermometer shielded from direct heat radiation). The index can 
be calculated using the following formulae for outdoor and indoor work environments 
(Kjellstrom et al., 2009). For outdoor conditions, WBGT is determined as follows: 

0.7𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 + 0.2𝑇𝑇𝑔𝑔 + 0.1𝑇𝑇𝑎𝑎 

In indoor settings, the WBGT formula is as follows: 

0.7𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 + 0.3𝑇𝑇𝑔𝑔 

The coefficients 0.7, 0.2, 0.1, and 0.3 reflect the relative significance of each parameter. It is 
important to note that some of the variables included in the WBGT formula can be estimated 
by combining climate data with other information. 

Since specialized WBGT measurements are not typically available from standard weather 
stations, several formulae have been developed to estimate WBGT using routinely collected 
meteorological data. In their review, Lemke and Kjellstrom (2012) evaluated various methods 
for estimating WBGT from meteorological data. They recommended using Bernard’s (1999) 
approach for calculating indoor WBGT and the method described by Liljegren et al. (2008) for 
determining outdoor WBGT when assessing the impact of climate change on occupational 
heat stress at a population level. Following their guidance, daily WBGT values were estimated, 
both for indoor and outdoor conditions, using nationally aggregated and population-weighted 
climate data from Met Eireann.3 

3.3.2. Baseline impact 
A time-series regression model was used to calculate the baseline impact. The dependent 
variable, denoted as Δ lnY𝑡𝑡, represents the quarterly per capita growth rate in labour 
productivity.  This dependent variable allows us to address possible non-stationarity concerns 
and to examine short-term changes in labour productivity. Therefore, excluding certain 
relevant variables, such as technical progress and investment in physical capital due to data 
constraints, may not drastically alter the observed relationships between the variables in the 
model. This is because these omitted variables generally increase steadily over time, 
particularly within the timeframe of our study. The independent variables consist of the heat 
stress index WBGT, a seasonal indicator, and the interaction between WBGT and season. The 
model is formally described as follows: 

 
3 Appendix C includes detailed steps for estimating natural wet bulb temperature and black globe 
temperature from climate data. 



Δ 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑡𝑡 + 𝛽𝛽2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑡𝑡 + 𝛽𝛽3(𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑡𝑡 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑡𝑡) + 𝜀𝜀𝑡𝑡        (1) 

Here, 𝛽𝛽0 serves as the intercept, 𝛽𝛽1 represents the coefficient for the impact of the WBGT 
index on the per capita growth rate in labour productivity, 𝛽𝛽2 denotes the coefficient for the 
influence of seasonality on the per capita growth rate in labour productivity, 𝛽𝛽3 indicates the 
coefficient for the interaction term between WBGT and season, showing how the effect of 
WBGT varies across different seasons and 𝜀𝜀𝑡𝑡 represents the error term. It is essential to 
emphasize that the time series characteristics of the data, including stationarity and structural 
break, were assessed and that appropriate measures were taken accordingly. Furthermore, 
our model specification and identification strategy are similar to those used in studies by 
Hsiang (2010), Zivin and Neidell (2010), Dell et al. (2012), Burke et al. (2015), and Coronese et 
al. (2019). We examine the impact of WBGT on short-term changes in labour productivity 
using the per capita growth rate while controlling for any omitted variables that typically 
increase with labour productivity. 

Table 3.1. Descriptive statistics of key variables (1998 – 2022) 

Variable Mean Maximum Minimum 
Per capita growth rate in labour productivity 0.0150 0.2717 -0.0748 
Outdoor WBGT (oC) 11.3 16.5 6.3 
Indoor WBGT (oC) 7.1 10.46 2.3 

3.4. Results and discussion 

3.4.1. Descriptive statistics 
Table 3.1 summarizes the key variables. It shows that the average output per worker increased 
by 1.5% per quarter from 1998 to 2022. The mean outdoor working temperature (i.e., outdoor 
WBGT) during the same period was estimated to be 11.3oC, with the highest estimated 
temperature at 16.5oC and the lowest at 6.3oC. As expected, the estimated indoor working 
temperatures (i.e., indoor WBGT) are generally lower than outdoor temperatures, with an 
average of 7.1oC. It is important to note that the WBGT values were estimated based on the 
combined influence of various climatic factors affecting human beings, including air 
temperature, solar radiation, wind speed, and relative humidity. 

3.4.2. Baseline regression results 
Equation (1) was applied to assess the impact of heat stress levels on the workforce in Ireland, 
considering both outdoor and indoor work environments. The results show that an increase 
in occupational heat stress, whether experienced in outdoor or indoor working environments, 
significantly reduces labour productivity (see Table 3.2). For example, a 1oC increase in 
outdoor WBGT is associated with a statistically significant decrease of 0.87%4 in labour 
productivity. This result highlights the tangible consequences of rising WBGT values, even 
when they remain below the established thresholds for productivity loss. It is posited that this 
finding may, in part, be attributed to the notably high relative humidity conditions prevalent 

 
4Note that our impact model is structured in a log-level format, which means that a one-unit increase in the independent 
variable is approximately associated with a change of about 100*β% in the dependent variable. 



in Ireland, with an annual average of about 83%. High relative humidity hinders the process of 
evaporative cooling, a fundamental mechanism by which the body releases heat. 
Consequently, the combination of high relative humidity and a marginal increase in 
temperature can intensify the perception of heat and discomfort among individuals, thereby 
contributing to heightened stress and fatigue among the working population. Ultimately, in 
conditions where the air is already saturated with moisture, the effectiveness of sweat 
evaporation from the skin’s surface is compromised, impeding the body’s natural cooling 
mechanisms. 

Furthermore, the analysis highlights the impact of seasonal variation on labour productivity, 
notably revealing a significant decline during the winter season compared to autumn. 
Interestingly, the productivity levels in summer and spring did not show statistically significant 
reductions when contrasted with the autumn baseline.  

The interaction between season and WBGT reveals that an increase in outdoor WBGT during 
winter can significantly improve labour productivity. This finding might seem surprising, but it 
is believed that this could be because the rising temperatures at the lower end of the 
temperature distribution could reduce wind chill effects, especially given Ireland’s strong 
winds. However, this result calls for further investigation into the specific factors that cause 
these season-specific effects. 

Table 3.2. Impact of WBGT on labour productivity with seasonal interaction effects 

Variable Outdoor Indoor 
WBGT -0.0087* 

(0.0052) 
-0.0059* 
(0.0033) 

Winter -0.0800** 
(0.0380) 

-0.0692* 
(0.0391) 

Summer 0.0974 
(0.0711) 

0.0706 
(0.0518) 

Spring 0.1628 
(0.1310) 

0.1260 
(0.1051) 

Winter*WBGT 0.0348* 
(0.0211) 

0.0227 
(0.0569) 

Summer*WBGT -0.0386 
(0.0317) 

-0.0291 
(0.0250) 

Spring*WBGT -0.0664 
(0.0528) 

-0.0544 
(0.0447) 

Constant 0.0335** 
(0.0169) 

0.0180* 
(0.0102) 

   
Observations 99 99 
R2 0.1245 0.0891 
Adjusted R2 0.0910 0.0743 

Notes: * indicates significance at the p<0.1 level, ** at the p<0.05 level, and *** at the p<0.01 level. Standard 
errors are provided within parentheses.  



3.4.4. Robustness check 
A bin regression analysis was conducted as a supplementary step to check the robustness of 
the primary findings. In this analysis, the dependent variable was the natural logarithm of 
labour productivity, and the independent variable consisted of WBGT bins, each representing 
a 2oC range. A time trend was included for possible trends and other omitted variables. The 
results are detailed in Table 3.4, and the corresponding boxplots can be found in Appendix A 
for further reference. In this bin regression, each coefficient represented a change in the log 
of labour productivity associated with a specific WBGT bin relative to a chosen reference 
category. The supplementary analysis generally indicates that labour productivity decreases 
with each two-degree increase in WBGT, although some coefficients are insignificant. This 
supplementary finding further supports the proposition that even when WBGT remains below 
established thresholds, rising temperatures can harm labour productivity. Furthermore, it is 
worth mentioning that three previously published ERFs from studies by Sahu et al. (2013), 
Dunne et al. (2013), and Li et al. (2016) were also used, and the results align with the existing 
literature in Ireland (see, for example, Roson & Sartori, 2016; Grosling, 2018). 

Table 3.3. Regression with WBGT bins 

Outdoor Indoor 
Reference bin = [6oC, 8oC)  Reference bin = [2oC, 4oC)  
[8oC, 10oC) -0.0077* 

(0.0045) 
[4oC, 6oC) -0.0049 

(0.0467) 
[10oC, 12oC) -0.0143** 

(0.0069) 
[6oC, 8oC) -0.0023* 

(0.0014) 
[12oC, 14oC) -0.0247 

(0.0348) 
[8oC, 10oC) -0.0035** 

(0.0017) 
[14oC, 16oC) 0.0048 

(0.0324) 
  

Time trend 0.0128*** 
(0.0004) 

Time trend 0.0125*** 
(0.00039) 

Constant 2.4356*** 
(0.0387) 

Constant 2.4857*** 
(0.0482) 

Notes: [i, j) = 1 if WBGT is greater than or equal to i but less than j and zero otherwise. For instance, [6oC, 8oC) = 
1 if the outdoor WBGT value falls within this bin and zero otherwise. * Indicates significance at the p<0.1 level, 
** at the p<0.05 level, and *** at the p<0.01 level. Standard errors are provided within parentheses. 

3.5. Conclusion 
This section highlights the implications of climate-induced heat stress on Irish labour 
productivity. The findings underscore the pressing need for proactive measures to mitigate 
the adverse effects of rising temperatures and humidity levels on the workforce. Our analysis 
reveals that even in Ireland’s moderate climate, increasing levels of occupational heat stress, 
as measured by the Wet Bulb Globe Temperature (WBGT), can detrimentally impact 
productivity. 

Our observation that the negative impact on productivity persists even when heat stress 
thresholds are not exceeded is particularly important. This highlights the complex interplay 



between temperature, humidity, and productivity. We attribute this phenomenon to the 
elevated relative humidity conditions in Ireland, which impede the body’s natural cooling 
mechanisms and exacerbate stress and fatigue among workers. 

To address these pressing concerns, policymakers, employers, and stakeholders must 
prioritise implementing comprehensive strategies to mitigate heat stress in the workplace. 
This may involve improving ventilation systems, implementing heat stress management 
protocols, providing adequate rest breaks, and promoting awareness and education regarding 
heat-related risks. 

4 Impacts on Agriculture 
4.1. Introduction 
Agriculture is critical in Ireland’s economy, social fabric, and cultural heritage. From an 
economic perspective, the sector significantly contributes to employment, exports, and Gross 
National Income (GNI). In 2022 alone, it accounted for 6.5% of employment and 6.7% of GNI 
(Department of Agriculture, Food, and the Marine, 2020). On the societal level, it is intricately 
woven into the identity of many rural communities, extending its significance beyond mere 
food production (Emmet-Booth et al., 2019). Therefore, understanding how climate change 
impacts the entire sector, and its subsectors is immensely significant from economic and policy 
perspectives. 

Climate change has a significant impact on agricultural production and productivity, primarily 
through changes in temperature and rainfall patterns. These changes can lead to shifts in 
growing seasons, increased occurrence of extreme weather events, and variations in water 
availability. As a result, crop yields are directly affected along with livestock productivity (IPCC, 
2022). To illustrate, rising temperatures can lead to heat stress in crops and livestock, affecting 
their growth and reproduction. Moreover, changes in precipitation patterns like intensified or 
unpredictable rainfall alongside prolonged droughts, further compound challenges for 
farmers. In addition, warmer conditions contribute to an increased prevalence of pests and 
diseases which pose a threat to the health of crops and livestock. Collectively, these climate-
induced changes pose substantial risks to global and local food production systems. 

Extensive research has been conducted to examine the impacts of climate change on 
agricultural production, particularly focusing on crop production. These studies use various 
approaches including crop simulation and statistical models (see, for example, Mendelsohn et 
al., 1994; Chen et al., 2004; Deschênes & Greenstone, 2007; Rosenzweig et al., 2014; Challinor 
et al., 2014; IPCC, 2022). Crop simulation models are used to analyse the impact of 
environmental conditions (e.g., sunlight, water availability, air and soil temperature, carbon 
dioxide concentrations, air humidity, etc.) on crop growth and yield. These models can 
simulate crop growth at both the field scale and regional scale, providing insights into how 
climate change influences crops (Antle & Stöckle, 2017). In addition, they allow researchers to 
assess the role of farm-level adaptation (such as crop diversification, irrigation, and changes 
in land use practices) in mitigating the negative impacts of climate change. To represent the 



economic implications of these changes in yield on agricultural markets, researchers 
commonly use Partial Equilibrium (PE) and Computable General Equilibrium (CGE) models, 
along with various econometric approaches or simulation models (Nelson et al., 2014). 

An earlier use of crop simulation models in Ireland revealed that certain crops, including 
potatoes, would face challenges in drier parts of eastern Ireland. Moreover, there would be a 
notable decrease in grass growth during dry summers in the southeast (Holden et al., 2003). 
However, this research did not provide specific recommendations for Irish farmers on adapting 
their farming practices to better address changing agroclimatic conditions. Subsequent 
research showed that implementing adaptive practices can help mitigate the impacts of 
climate change (Sweeney et al., 2008). For instance, reducing fertilizer inputs in specific 
locations can enhance soil drainage and mitigate production losses. Furthermore, climate 
change is projected to reduce Irish agricultural output by between €1 billion and €2 billion per 
annum by the middle of the century through its impacts on crop yield losses, flooding, and 
the emergence and spread of pests and diseases (Flood, 2013). 

It is worth mentioning the potential fertilizing effect of higher CO2 concentrations in the 
atmosphere due to climate change. Whilst it is difficult to accurately model and project these 
benefits, it is expected that crops such as wheat, barley, and grass in Ireland would benefit 
from this effect, which in turn would indirectly benefit the livestock subsector (Sweeney et al., 
2008; IPCC, 2022). In addition, Perez Dominguez et al. (2016) have shown that without 
considering the beneficial effects of CO2 fertilization, the impacts of climate change would lead 
to an expansion of agricultural land in the EU. This expansion is necessary to make up for 
productivity losses on existing land, and it benefits crops in Eastern Europe whilst causing 
more stress on agriculture in Southern Europe. However, when the positive effects of CO2 
fertilization are taken into consideration, the harmful impacts of climate shocks are balanced 
out in most EU regions. This leads to a significant decrease (-5%) in the overall agricultural land 
because increased yields offset the need for expanding agricultural land. 

To update the literature on the impact of climate change on agriculture in Ireland and its 
economic implications, the approach and data from the CO-designing Assessment of Climate 
CHange costs (COACCH) project will be used. The approach and findings of the COACCH project 
will be presented and compared with previous assessments in the literature. 

4.2. Methods 
To assess the impacts of climate change on the agricultural sector, a two-step process based 
on the COACCH project (Boere et al., 2019) was followed. First, a crop simulation model was 
used to determine the direct impact of climate change on crop yields. Second, an 
agroeconomic model was employed to consider how farmers adjust their input management 
in response to climate-induced changes in crop yields. 

The EPIC (i.e., Environmental Policy Integrated Climate) and GEPIC (i.e., Geographic 
Information System (GIS)-based EPIC) crop simulation models were used to examine the direct 
impacts of climate change on crop yields. These dynamic system models consider various 
factors such as genetic characteristics, soil properties, water availability, temperature, 
humidity, and tillage practices to predict different stages of crop growth and outcomes like 



emergence, flowering, and grain yield. In addition to simulating plant growth under changing 
climatic conditions at a global scale including Ireland, these models also incorporate carbon 
and water cycles. They also account for the positive impact of elevated CO2 levels on crops’ 
productivity, thus mitigating yield losses caused by climate change stressors. 

The EPIC and GEPIC models used climate projection data from the EURO-CORDEX project, 
which provides regional climate projections for Europe based on downscaled global climate 
projections. This data includes minimum and maximum temperature, precipitation, relative 
humidity, and wind speed. Multiple global climate models were used to account for 
uncertainties in projecting the impacts of climate change. The COACCH project specifically 
considered four RCPs, namely the 2.6, 4.5, 6.0, and 8.5 trajectories that represent different 
greenhouse gas scenarios for the future. 

In the second step, the impacts of climate change on crop yields are incorporated into an agro-
economic model to determine changes in farmers’ inputs, allocation of land, productivity 
changes, and price changes. This agro-economic model takes a Ricardian perspective by 
examining how climate change alters the relative productivity of crops in different regions. As 
a result, farmers will adapt autonomously by shifting towards more favourable crops while 
also considering market conditions such as commodity prices. The COACCH project used the 
GLOBIOM model to assess changes in production areas (Havlík et al., 2014). The GLOBIOM 
model is a partial equilibrium model that focuses on the agricultural and forestry sectors, as 
well as bioenergy. It divides the agricultural sector into various small regions where 
agricultural commodities are produced and traded. Consequently, data regarding crop yields 
from EPIC is inputted into the model to determine alterations in land allocation for different 
crops, adjustments in inputs used, and changes in overall areas dedicated to agriculture versus 
those dedicated to forestry and natural land. 

It should be noted that this crop model, like others, has some important limitations. Firstly, 
they examine the impacts of climate change on crop yield but do not include the impacts of 
extreme weather and weather variability. Extreme hot days, extreme cold days, extreme winds 
and storms are expected to increase as global temperatures increase. These models focus on 
average changes in climate stimuli, which would underestimate the actual impacts of climate 
change. Secondly, these models focus on specific “subsistence” crops, not considering other 
agricultural outputs such as fruit and vegetable tillage. These subsistence crops represent only 
approximately 57% of Irish Crop Gross Value Added (GVA) and less than 5% of total agricultural 
GVA. Thirdly, when Flood (2013) categorises potential threats and opportunities, he classified 
crop yield changes as either a threat or an opportunity depending on the climate change 
effects on a particular crop. The classification shown in Flood (2013) is shown in Table 4.1 
below: 

  



Table 4.1. Classification of threats and opportunities in agriculture by Flood (2013) 

Rank Climate change Impact Threat or 
opportunity 

1 Pests and diseases – air borne pathogens influenced by changes in air temp 
and humidity – soil borne pathogens by soil temp, soil moisture and winter 
kill effects 

T 

2 Crop yield – could increase or decrease dependent upon the crop/variety 
response to the projected change (e.g. yield response to heat/drought/water 
logging stress) 

O/T 

3 Stress factors – changing temperatures could increase the risks associated 
with frost damage, drought and field water logging (wide range of effects 
dependent upon crop but tendency will be for deleterious consequences) 

T 

4 Drought effects (soil moisture availability) – increased risk due to higher ET 
rates combined with reduced summer rainfall 

T 

5 Weeds – changes in weed spectrums driven by winter survival, soil 
conditions, crop competition changes (range of consequences dependent 
upon species and environment but tendency will be for greater weed 
activity) 

T 

6 Flooding – increased risk due to more frequent extreme rainfall events, both 
in winter and summer 

T 

7 Salinity – increased risk of inundation of low lying land on coastal regions 
due to sea level rise 

T 

8 Water logging effects (seasonal, anaerobic conditions) due to more frequent 
high intensity rainfall events 

T 

9 Changes in crop development (sowing dates, day length effects, growth 
rates, earlier springs, flowering dates, yield building and harvest dates). Wide 
range of consequences dependent upon crop/variety. 

O/T 

10 Crop quality – could increase or decrease dependent upon crop/variety 
response to the projected change 

O/T 

Notes: This table is from Flood (2013:p.5) and was originally adapted from Defra (2012). 

Furthermore, this approach does not directly address the impacts of climate change on 
livestock and ecosystem services. The hybrid approach developed in the COACCH project 
focuses solely on evaluating the effects of climate change on crops, which indirectly contribute 
to livestock meat and dairy production. However, in reality, research shows that changes in 
climate directly impact livestock (Baumgard et al., 2012; Das et al., 2016; Godde et al., 2021; 
Mauger et al., 2015; Thornton et al., 2021). 

Flood (2013) uses both a crop simulation model and a dairy response function to provide 
estimates of climate change impacts in the agricultural sector in Ireland. By including the dairy 
response function, he aims to capture the direct impacts of a changing temperature and 
humidity on dairy cattle. This is important given that 16% of total agricultural output in 2012 
was dairy output (Department of Agriculture, Food and the Marine, 2013; Teagasc, 2013) . 
With this method, Flood (2013) found that climate change damages from agriculture will be 
an annual cost of €1-2 billion by 2050. When estimating costs for the livestock sector and the 
arable sector, Flood (2013) found the total costs per year to be €530 million in the arable sector 
and €745 million in the livestock sector. As such, analysis that does not focus on the direct 
impacts of climate change on livestock may produce results that are underestimated. 

Finally, the results are distinguished for the two 2013 Irish NUTS-2 regions: the "Border, 
Midland and Western" and the "Southern and Eastern" regions. Figure 4.1 depicts these two 



regions which differ both in terms of agriculture and climate. The "Southern and Eastern" 
region is the main agricultural area with 2 million hectares of cropland and grassland 
compared to 0.9 million hectares in the "Border, Midland and Western" region. The former 
region accounts for 66% of Ireland's agricultural output value. Temperature changes are also 
expected to vary along a North/South gradient, with an anticipated increase of 1.2°C at the 
most northern point compared to a 0.8°C increase at the most southern points during winter 
months. During the summer months, it is projected that there will be an average temperature 
increase of 0.8°C in northern parts of Ireland, compared to a 1.3°C increase in southern areas. 
Heatwave scenarios indicate that the "Southern and Eastern" regions will experience hotter 
climates overall, while the "Border, Midland, and Western" region will see milder changes. 

 

 

 

Figure 4.1. Ireland disaggregated into its two 2013 NUTS-2 regions.  
Source: Eurostat Statistical Atlas, NUTS and territorial typologies 

4.3. Results and discussion 
The impacts of climate change on agricultural production in Ireland were examined across 
different climate change scenarios and timeframes. These impacts were measured by 
comparing a reference scenario without climate change to various scenarios represented by 
the RCPs for the short- (2030), medium- (2050), and long-term (2070) timeframes. 

Based on the crop simulation models, it is projected that under most RCPs, major Irish crops 
such as barley, wheat, and potato will experience an increase in yields in the future. The 
expected yield increase ranges between 15% to 20%, depending on the specific crop and 



scenario considered. This boost in productivity can be attributed to the positive impact of CO2 
fertilization. It is important to note that C3 crops, predominantly grown in Ireland, tend to 
benefit more from increased levels of atmospheric CO2 concentration than C4 crops5. In 
addition, it should be noted that the impacts are greater under the RCP4.5 scenario due to 
higher CO2 concentration when compared with other scenarios (see Figure 4.2). 

The GLOBIOM model provides insights into the reallocation of land between different crops, 
consumption patterns, trade dynamics, and prices in domestic and international markets. The 
results indicate that farmers tend to shift their land resources towards more profitable crops. 
Specifically, it is expected that the two Irish regions will witness an expansion in the land 
allocated to oats, a stabilization in the land allocated to wheat, and a reduction in the land 
allocated to barley. It should be noted that these reallocation patterns are influenced by 
changes in crop profitability based on yields as well as additional costs associated with 
cultivating certain crops elsewhere. Consequently, the reduction in the land allocated to barley 
indicates improved productivity and a relatively lower level of profitability. In addition, there 
is an expected expansion in the land allocated to other green fodders, such as grass and alfalfa 
(lucerne), which serve as feed sources for livestock. 

These findings are consistent with prior studies conducted in Ireland. For instance, according 
to Holden et al. (2003), climate change is expected to have a limited impact on barley 
production and may play a more significant role in supplementing livestock feed supply. 
However, the effect on potato crops will significantly depend on the availability of irrigation 
water. In addition, the research by Hennessy and Shrestha (2010) suggests that climate change 
may positively influence grass growth because of higher atmospheric CO2 concentrations. 

 

 

 

 

 
5 Plants are classified as C3 or C4 based on the biochemical process of converting carbon dioxide into sugar 
during photosynthesis. Common C3 agricultural crops include wheat, barley, potatoes, and sugar beets. 
Common C4 plants important to agricultural production include maize, sugar cane, millet, and sorghum (Hertel 
& Rosch, 2010). 



 

Figure 4.2. The projected impact of climate change on major Irish crops under different climate 
change scenarios. 
Source: COACCH project, based on the EPIC-GLOBIOM models for the Irish case 
Notes: From top to bottom panel: barley, oats, other green fodder, potato, sugar beetroot, and wheat. Evolutions 
are represented for the two Irish NUTS-2 regions: the “Border, Midland and Western’’ region and the “Southern 
and Eastern’’ region. 



 

It is noted that Flood (2013) uses estimates that expect wheat, potato, and maize crops to 
experience reductions in yield whilst increases in yield for wheat and potatoes are found in 
this paper. This difference partially explains why a positive and small impact from climate 
change on the agriculture sector is found in this paper, whereas Flood (2013) finds a negative 
impact from climate change. Flood (2013) estimates a much larger negative impact which may 
be because he also considers the direct impact of temperature and humidity on dairy, whilst 
only the indirect impacts of climate change on livestock are considered in this paper. 

4.4. Conclusion 
Climate change poses both positive and negative impacts on the agricultural sector. Adverse 
effects include lower rainfall, increasing variability in weather patterns, and extreme heat, 
which directly affect production. Also, positive impacts like increased carbon dioxide levels can 
contribute to crop fertilization and extended growing seasons. These effects will have 
consequences on production, consumption, prices, trade decisions, and land use. 

These impacts were examined using a process-based approach that incorporates agronomic 
and economic mechanisms to determine their direct consequence on crop productivity. 
Farmers’ responses regarding land use and crop choices were also considered. The results 
indicate that the projected changes in climatic conditions are expected to moderately benefit 
major crops such as barley and wheat grown in Ireland. Furthermore, there may be indirect 
benefits for the livestock subsector due to improvements in grass production caused by 
climate change. These positive projections primarily stem from the beneficial effects of CO2 
fertilization. Overall, there is a greater prevalence of C3 crops in Ireland that stand to gain from 
increased levels of atmospheric CO2 concentrations, compared to the number of C4 crops 
cultivated. 

The findings presented in this section have many limitations. Firstly, the analysis does not 
consider the effects of ecosystem service losses, pests and diseases, water availability, and 
extreme weather events. Secondly, this method does not consider various crops, such as 
mushrooms and fruit. Secondly, GLOBIOM operates in a recursive-dynamic manner, which 
may underestimate producers’ ability to plan for future decisions. In addition, being a partial 
equilibrium model, it does not consider the interconnections between the agricultural sector 
and other sectors. Hence, the projected positive impacts are likely to be a partial estimate of 
the impacts of climate change on Ireland’s agricultural sector. 

5 Impacts on River Flooding 
5.1. Introduction 
One of the major concerns related to climate change is its impact on river flooding (Winsemius 
et al., 2013; IPCC, 2022). As the climate continues to warm, there is a higher moisture capacity 
in the air, leading to an increased risk of more frequent and intense precipitation events, 
resulting in overflowing rivers and a greater likelihood of flooding. This intensification of the 



hydrological cycle poses significant risks, with projected estimates indicating a potential 
doubling of flood risk and a 1.2- to 1.8-fold increase in GDP loss due to flooding between 
temperature increases of 1.5°C and 3°C. If global warming exceeds three degrees Celsius in 
Europe, the economic costs and number of people impacted by precipitation and river 
flooding could double (IPCC, 2022).  

The impacts of climate change on river flooding are complex and influenced by factors such 
as hydrology and geography. However, the frequency and severity of flooding events are 
projected to increase in a warmer climate. These changes will significantly affect human lives, 
livelihoods, property, ecosystems, and critical infrastructure. 

Previous studies in Ireland have investigated the effects of climate change on the hydrological 
cycle, including flood risk and its impact on property sales and rentals (see, for example, 
Charlton et al., 2006; Steele-Dunne et al., 2008; Pilla et al., 2019; Sarkar Basu et al., 2022). For 
instance, Charlton et al. (2006) discovered that increases in winter precipitation will lead to 
higher runoff levels, particularly in the western regions of Ireland. This is expected to result in 
more frequent and severe flooding events as well as more extended periods of seasonal 
flooding. The findings of Steele-Dunne et al. (2008)  further support this notion by illustrating 
how hydrology in Ireland will be affected by climate change, highlighting changes expected for 
winter and summer flows whilst providing more reliable information regarding flood risk. In 
addition, Pilla et al. (2019) suggest that properties situated within areas previously impacted 
by floods tend to have lower sale prices and rental values compared to equivalent properties 
outside these flood-prone zones. This implies that households generally consider past flood 
events when making housing decisions. 

The approach and data from the COACCH project were used to examine the impact and costs 
of river flooding in Ireland. 

5.2. Methods 
The GLOFRIS (i.e., GLObal Flood Risks with IMAGE Scenarios) model is commonly used to 
assess the direct economic impacts of river flooding on infrastructure. This global grid-based 
framework covers all major river basins worldwide6 and encompasses the three key factors 
that influence flood risk: hazard (which involves expected climate shifts or climate 
projections), exposure (representing socioeconomic variables like GDP and population), and 
vulnerability (such as flood protection standards or measures of flood adaptation) (IPCC, 2013; 
Winsemius et al., 2013). 

The process of assessing flood risk using GLOFRIS consists of several steps. Firstly, the 
framework generates a baseline hazard, drawing on data from PCR-GLOBWB, a global 
hydrological model responsible for calculating the occurrence, extent, and depth of flooding 
events. Next, GLOFRIS utilizes bias-corrected meteorological data from established global 
circulation models like EC-EARTH, HadGEM2-ES, and MIROC5 to project future flood hazards. 
In the final step, the flood hazard data derived from GLOFRIS is combined with exposure data 

 
6 The model does not include all river basins in Ireland. However, it includes the Shannon River basin, the 
largest in the country and is particularly significant for flood risk assessments. 



sourced from the HYDE database, which provides information on the urban area fraction 
within each grid cell, and vulnerability data based on the FLOPROS database, offering insights 
into local flood protection standards. This combination yields an indicator for flood risk, 
represented in terms of expected annual damage (EAD) (Winsemius et al., 2013). EAD, in 
essence, quantifies the damage caused by flooding in each grid cell, considering the 
probability of a flooding event occurring in that specific grid cell (Ignjacevic et al., 2020). 

5.3. Results and discussion 
In the context of this paper, estimations derived from the GLOFRIS model, which were 
generated as part of the COACCH project, were employed to evaluate the economic 
consequences of river flooding in Ireland across various climate scenarios (corresponding to 
the Representative Concentration Pathways, RCP), socioeconomic conditions (related to the 
Shared Socioeconomic Pathways, SSP), and adaptation strategies (as outlined in Lincke et al., 
2019). The findings and projections from this analysis are presented in Tables 5.1 and 5.2.  

Table 5.1. Expected Annual Damage (EAD in millions of euros) for River Flooding in Ireland under a 
no-adaptation scenario. 

Scenario 2030 2040 2050 2060 2070 
SSP1-RCP2.6 24.19 44.65 67.98 92.36 119.14 
SSP2-RCP4.5 24.24 41.27 59.41 77.53 95.22 
SSP2-RCP6.0 24.45 40.97 58.25 76.11 96.25 
SSP5-RCP8.5 30.08 62.52 108.07 167.03 243.5 

Data Source: COACCH Project. Notes: EAD values represent changes with respect to the base year (i.e., 2010). 
Units are in €millions (2015) PPP. 

Table 5.2. Expected Annual Damage (EAD in millions of euros) for River Flooding in Ireland under an 
optimal adaptation scenario. 

Scenario 2030 2040 2050 2060 2070 
SSP1-RCP2.6 9.13 17.08 25.55 34 42.99 
SSP2-RCP4.5 8.91 15.02 21.39 27.58 33.47 
SSP2-RCP6.0 9.09 15.15 21.26 27.31 33.7 
SSP5-RCP8.5 10.71 22.21 37.4 56.47 80.93 

Data Source: COACCH Project. Notes: EAD values represent changes with respect to the base year (i.e., 2010). 
Units are in €millions (2015) PPP. 

Table 5.1 indicates that if no additional measures are taken to adapt to river flooding, the 
expected annual economic damage will increase in the coming years. The values in the rows 
show this, and damages are likely to be even greater if current socioeconomic practices 
continue or worsen, as indicated by the values in the columns. Table 5.2 also reflects this trend 
but emphasizes the importance of implementing additional adaptation strategies. The 
expected annual damages reported in Table 5.2 are generally about 50% lower than those in 
Table 5.1, highlighting the significance of adopting additional adaptation measures. 



5.4. Conclusion 
This section examined the potential impact and costs associated with river flooding in Ireland 
using the GLOFRIS model. This model includes all major river basins worldwide and considers 
three key factors that contribute to flood risk: hazard (i.e., expected changes in climate or 
climate projections), exposure (i.e., socioeconomic variables such as GDP and population size), 
and vulnerability (i.e., flood protection measures or level of adaptation). The analysis was 
conducted under various climate change scenarios, socioeconomic conditions, and adaptation 
strategies. The findings indicate that without implementing additional adaptation measures, 
annual economic damages from river flooding are projected to increase in the future. For 
instance, if no additional adaptation measures are undertaken, the projected annual cost for 
the year 2070 under a moderate warming scenario of SSP2-RCP4.5 is about €95 million.  

It is important to note that the GLOFRIS model, like all modelling tools, relies on certain 
assumptions and may contain uncertainties that can affect the accuracy of its predictions. The 
accuracy of GLOFRIS predictions depends on the quality and resolution of input data such as 
digital elevation models (DEMs), hydrological data, and climate projections. Uncertainties in 
these data sources, such as errors in measurement, interpolation, or outdated information, 
can propagate through the model and affect the reliability of its outputs. Also, GLOFRIS 
simulates flood events based on hydrological processes, including rainfall-runoff relationships, 
river routing, and floodplain inundation. Uncertainties in these processes, such as variations 
in rainfall patterns, soil properties, and land use changes, can affect the accuracy of the 
model’s predictions, particularly in regions with complex topography or hydrology. Lastly, 
GLOFRIS relies on parameters and equations to simulate flood events and estimate flood risk. 
Uncertainties in these model parameters, such as Manning’s roughness coefficient for 
floodplain inundation or the parameters governing rainfall-runoff relationships, can affect the 
accuracy of the model’s predictions. 

6 Impacts on Health 
6.1. Introduction 
Climate change has various detrimental impacts on human health, which can significantly 
increase rates of morbidity and mortality (Watkiss & Ebi, 2022; Woodland et al., 2023). As 
temperatures rise, heat waves are projected to become more frequent and severe, which 
could lead to a rise in cases of heat-related illnesses such as heat stroke and heat exhaustion. 
These conditions often place a significant strain on the cardiovascular system, particularly 
among individuals with pre-existing heart conditions (Liu et al., 2022). Urban areas face 
additional vulnerability due to the urban heat island effect, where the replacement of natural 
land covers with materials like asphalt and concrete absorbs and retains heat, leading to a 
modification in local climate conditions, higher temperatures, and a heightened incidence of 
heat-related illnesses and mortality (Ščasný et al., 2019). Furthermore, changes in 
temperature and weather patterns increase the risk of vector-borne, waterborne, and 
respiratory diseases by influencing the geographic distribution of disease vectors, as well as 
the quality of air and water (Rocklöv & Dubrow, 2020). 



These impacts on human health can have significant economic costs globally. A recent 
assessment revealed that climate-driven events resulted in a loss of US$253 billion in the 
global economy in 2021 (Romanello et al., 2022). European countries are also expected to 
incur substantial economic losses from climate-induced mortality and morbidity. For instance, 
a single hot day in Germany with temperatures over 30°C could lead to health losses ranging 
between €750,000 to €5 million per 10 million population (Karlsson & Ziebarth, 2018). In 
France, the health effects of heat waves from 2015-2019 resulted in an estimated economic 
impact of about €25.5 billion, including mortality and morbidity (Adélaïde et al., 2022). In 
addition, it is predicted that by the end of this century, temperature-induced mortality effects 
could cause annual losses of up to €100 billion for Europe (Watkiss & Hunt, 2012). 

Temperature changes have been highlighted as a significant concern for human well-being in 
the face of climate change (Kaźmierczak et al., 2022). Numerous studies have investigated the 
relationship between temperature and health, with a particular focus on mortality and 
morbidity outcomes (see, for example, Breitner et al., 2014; White, 2017; Gasparrini et al., 
2022; Deschenes, 2022; Liao et al., 2023; Gibney et al., 2023). Mortality is typically assessed 
by analysing death rates (both overall and cause-specific), whilst morbidity is proxied by 
calculating hospital admission rates or the rate of visits to emergency departments (EDs). For 
instance, Breitner et al. (2014) investigated the short-term effects of air temperature on 
mortality in three cities of Bavaria, Germany. Their findings revealed that even a slight increase 
in temperature could lead to a significant rise in non-accidental mortality, with an 11.4% 
increase observed when the 2-day mean temperature increased from the 90th to the 99th 
percentile. Similarly, Gasparrini et al. (2022) found that higher temperatures are associated 
with increased mortality risk. Their study assessed the relationship between temperature and 
all-cause mortality in England and Wales from 2000 to 2019. Regarding morbidity, Gibney et 
al. (2023) found an immediate effect of high temperature on heat-related morbidity, as 
measured by ED visits. In contrast, cold-related morbidity has a lagged response of up to three 
weeks after the temperature shock, with a significant cumulative effect. 

Existing Irish studies have examined the mortality effects of temperature changes, specifically 
cold-weather impacts (see, for example, Healy, 2003; Goodman et al., 2004; Baccini et al., 
2008; Zeka et al., 2014). However, there are gaps in assessments specific to Ireland that need 
to be addressed. Most of these studies were conducted before 2010, and there is a lack of 
focus on morbidity. Therefore, the aim is to update and expand the existing literature by 
analysing the relationship between temperature and morbidity using emergency in-patient 
hospital admissions data from 2015 to 2019. 

6.2. Data 
The potential impact of temperature changes on morbidity was investigated by combining 
data on emergency in-patient hospital admissions from the Hospital In-patient Enquiry (HIPE) 
system with meteorological data from Met Éireann. This combination was based on the 
patient’s county of residence as well as the week and year of admission. Although it would be 
better to use data on emergency department (ED) presentations, as it is less affected by 
hospital supply-side constraints like bed capacity or workforce, such data in Ireland lacks 
diagnostic information on patients and has very limited demographic information. Hence, 



hospital admissions data was used in the analysis as it has detailed diagnostic and socio-
demographic information. 

6.2.1. Health data 
Data was accessed from the Healthcare Pricing Office (HPO) called Hospital In-Patient Enquiry 
(HIPE), which covers the period from 2015 to 2019. It is important to note that this dataset 
does not include information from the COVID-19 pandemic period, during which hospital 
activities were affected by public health restrictions that were put in place from early 2020. 

The HIPE is a system that collects clinical and administrative data of patients who are 
discharged from or died in, acute public hospitals in Ireland. This data is collected for both in-
patient and day discharges, including elective, emergency, and maternity cases across 53 acute 
public hospitals.7 Each HIPE discharge record contains administrative, demographic, and 
clinical details of a distinct episode of care. An episode of care begins at the patient’s 
admission to the hospital and ends at the time of discharge or death. However, since there is 
no unique patient identifier in the Irish healthcare system, it is not possible to associate 
multiple discharges with the same patient across different hospitals (Keegan et al., 2020). 

Importantly, the dataset includes information on the home residence of each patient, which 
is aggregated to the county council level. To merge this information with the meteorological 
data, city councils (e.g., Waterford) were combined with their corresponding counties (e.g., 
Waterford County). Similarly, Tipperary North and South were aggregated into one category, 
while North Dublin and South Dublin were kept separate. All observations with “no fixed 
abode” or “unknown” values were excluded as they could not be matched to the 
meteorological data. This resulted in 27 counties for analysis. It was decided to use the county 
of residence as the geographic unit of this analysis instead of the hospital or health region, 
which was used in previous literature (see Gibney et al., 2023). This allowed for an individual’s 
exposure to temperature to be captured more accurately. Under the Irish healthcare system, 
it would be difficult to accurately determine people’s exposure to temperature based on the 
hospital they were admitted to because they may be outside their county of residence. 

To specifically examine the impact of temperature change on hospitalisations, the sample was 
limited to emergency in-patient hospitalizations only. This means that patients who were 
admitted for elective care as a day patient or for maternity care have been excluded. In 
addition, not all patient groups are equally susceptible to temperature changes. Therefore, 
only diagnosis groups that have been identified in previous research as being most impacted 
by temperature changes were considered. This includes hospital admissions data related to 
circulatory diseases, respiratory diseases, metabolic diseases8, infectious diseases, and 
injuries, based on studies by Lin et al. (2009), White (2017), Rizmie et al. (2022), and 
Romanello et al. (2022). Finally, we exclude HIPE discharges with a length of stay exceeding 

 
7 Private hospital activity is not captured in HIPE. The Irish healthcare system is a mixture of public and private delivery and 
financing. 
8 Metabolic diseases include hereditary and acquired diseases such as diabetes and obesity. Rizmie et al. (2022) include these 
diseases in their study because they are underlying health conditions that are particularly vulnerable to temperature shocks. 



180 days and any discharges with missing key variables such as county of residence.9 It is 
important to mention that hospital discharges are calculated as a ratio per 100,000 individuals 
in each county. This calculation is based on population data obtained from the 2016 Census of 
Population (CSO Dataset E2011). 

6.2.2. Meteorological data 
The meteorological data used in this analysis is obtained from the historical 1km x 1km grid 
data provided by Met Éireann. The data is aggregated to the county level, except for Dublin, 
for each day between 2014 and 2019.10 In addition, daily maximum rainfall measurements (in 
millimetres) are included to account for humidity, as suggested by Barreca and Shimshack 
(2012). The temperature data is adjusted to account for the spatial distribution of the 
population in each county, providing a more accurate reflection of the weather experienced 
by the people living in each county. For example, the unpopulated mountainous area around 
the Wicklow Mountains in Wicklow might produce inaccurate results, potentially biasing the 
temperature downwards. This adjustment provides a better picture of the exposure variable 
(temperature) and how it affects population health. 

The daily county-level data are aggregated to the weekly level based on the mean for each 
week. Weeks based on the HIPE definition of weeks numbered from 0 to 52 were constructed, 
with each week starting on a Sunday. A week-start variable is built based on this information 
and used to calculate the weekly mean temperature. Also, lagged values are computed for 
one, two, and three weeks for each county. This accounts for the delayed effect that a 
temperature in a previous week may have on emergency hospital admissions. For instance, 
the temperature in week one might have residual effects on emergency hospital admissions 
in week 3. 

6.2.3. Methods 
In line with previous research by White (2017) and Gibney et al. (2023), panel fixed-effects 
models were used with county-week-year as the unit of analysis. As a result, each county-
week-year observation in the HIPE dataset was matched with the corresponding 
meteorological data for that county, week, and year. The merged dataset contains 7,020 
observations and covers a period of 5 years, 52 weeks, and 27 counties. The general 
specification of the model used is as follows: 

𝑙𝑙𝑐𝑐,𝑛𝑛,𝑦𝑦 = 𝛼𝛼 + �𝛽𝛽𝑗𝑗𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡𝑐𝑐,𝑛𝑛,𝑦𝑦 + ��𝜙𝜙𝑗𝑗,𝑘𝑘𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡𝑐𝑐,𝑛𝑛−𝑘𝑘,𝑦𝑦
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+ 𝑡𝑡 + 𝜀𝜀𝑐𝑐,𝑛𝑛,𝑦𝑦             (6.1) 

The indices c, w, and y represent the county of residence, week, and year, respectively. The 
dependent variable 𝑙𝑙𝑐𝑐,𝑛𝑛,𝑦𝑦 is, therefore, the emergency hospital admission rate per 100,000 
population in county c during week w of year y. To calculate this variable, the weekly 

 
9 While HIPE data relates to hospital discharges, the term “admission” is used to coincide with the occurrence of the weather 
event.  
10 To account for the lag effects of temperature in the model, additional temperature data for 2014 is needed. 



emergency hospital admissions for each county and year combination were divided by the 
county population and then multiplied by 100,000. The independent variables include 
temperature bins of width 3oC and their lags, rainfall along with its lags, a set of socio-
demographic variables, the Charlson co-morbidity index, and a set of fixed effects. Rainfall is 
used to account for the effects of humidity, as has been done in previous studies (White, 
2017).  However, for simplicity, it has been omitted from equation (6.1) but was controlled for 
during the estimation process. 

Specifically, 𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡𝑐𝑐,𝑛𝑛,𝑦𝑦 represents the indicator variable for temperatures in bin j for the 
current week. Similarly, 𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡𝑐𝑐,𝑛𝑛−𝑘𝑘,𝑦𝑦 represents the indicator variable for temperatures in bin 
j for the k-th lagged week, where k = 1, 2, 3. For instance, 𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡𝑐𝑐,𝑛𝑛−1,𝑦𝑦 represents the indicator 
variable for temperatures in bin j for the first lagged week. The coefficients associated with 
these variables are represented by 𝛽𝛽𝑗𝑗 and 𝜙𝜙𝑗𝑗,𝑘𝑘 respectively. The intercept and error terms are 
represented by 𝛼𝛼 and 𝜀𝜀𝑐𝑐,𝑛𝑛,𝑦𝑦. In addition, the diagnosis categories are represented by 𝜂𝜂𝑐𝑐,𝑛𝑛,𝑦𝑦, 
year trend by 𝜏𝜏, county fixed effect by 𝜑𝜑, and month-fixed effect by 𝑡𝑡. The year trend and 
month fixed effects are included to control for annual and seasonal factors. 

The vector of socio-demographic variables, represented by 𝑿𝑿𝑐𝑐,𝑛𝑛,𝑦𝑦 includes variables such as 
age, sex, marital status, the public/private status of the patient, and whether the patient has 
a medical card. On the other hand, 𝐶𝐶𝐶𝐶𝑐𝑐,𝑛𝑛,𝑦𝑦 represents the average Charlson co-morbidity index 
per county, week, and year. The Charlson co-morbidity index is a measure that assesses the 
severity of a patient’s multiple health conditions, using specific diagnostic codes, to predict 
the likelihood of death within one year following hospitalizations (Charlson et al., 1987). 

The identification strategy used in this analysis takes advantage of temperature being an 
exogenous shock. This means that the coefficients can be interpreted as causal estimates, as 
there is no mechanism where hospital admission changes affect temperature. However, it is 
important to note that the analysis uses emergency hospital admissions, not ED presentations. 
As a result, the estimates may be biased downwards due to supply-side constraints in 
hospitals. For instance, such constraints can reduce the number of people admitted to 
hospitals from the ED, potentially underestimating the effect. 

6.2.4. Results and discussion 
Before presenting the main findings, the distributions of temperature and the rate of 
emergency hospital admissions are shown in Tables 6.1 and 6.2, respectively. Table 6.1 reveals 
that about 0.41% of weekly maximum temperatures fall within the two highest temperature 
ranges, [25oC, 28oC) and [28oC,), while the lowest bins, [1oC, 4oC) and [4oC, 7oC) account for 
4%. The most common range is [10oC, 13oC), accounting for 22.88% of weekly maximum 
temperatures. The distribution of the temperature variable shows the infrequency of 
extremely high temperatures (i.e., 25 and above) in Ireland. Similarly, extreme low or sub-zero 
temperatures are uncommon.  

  



Table 6.1. Temperature bins used in the analysis 

Temperature bin % of weekly maximum temperature 
[1oC, 4oC) 0.35 
[4oC, 7oC) 3.65 
[7oC, 10oC) 19.69 
[10oC, 13oC) 22.88 
[13oC, 16oC) 17.48 
[16oC, 19oC) 20.49 
[19oC, 22oC) 12.84 
[22oC, 25oC) 2.21 
[25oC, 28oC) 0.28 
[28oC,) 0.13 

Source: Duffy et al. (2024) calculations based on Met Éireann’s data. Notes: [i, j) = 1 if the weekly maximum 
temperature is greater than or equal to i but less than j and zero otherwise. For instance, [1oC, 4oC) = 1 if the 
weekly maximum temperature falls within this bin and zero otherwise. 

Table 6.2 shows the average weekly emergency hospital admission rate across counties for 
each year-quarter. Notably, admissions are heightened in the first and fourth quarters of the 
year, where public holidays and cold weather likely contribute to the observed pattern. 

Table 6.2. Emergency in-patient hospital admissions (per 100,000 population) 2015-2019 

 2015 2016 2017 2018 2019 
Quarter 1 57.8 58.6 58.5 64.9 64.9 
Quarter 2 53.3 56.3 58.3 59.2 59.8 
Quarter 3 48.3 52.3 53.6 55.0 55.4 
Quarter 4 53.3 61.0 61.4 62.1 59.9 

Source: Duffy et al. (2024) calculations based on HPO’s data. 

The main findings are displayed in Table 6.3, with the reference category being the 
temperature bin [10oC, 13oC). The coefficients for all other bins are interpreted relative to this 
reference category. These coefficients are also plotted in Figure 6.1. In addition, the reported 
coefficients are in levels, indicating changes in hospital admissions per 100,000 population. 
However, these coefficients can be converted into percentage changes by dividing each 
respective coefficient by the mean weekly admission rate. For instance, when temperatures 
range from 22°C to 25°C, there was a rise in emergency hospital admissions of 4.7 per 100,000 
population compared to the reference category [10°C, 13°C). In terms of percentage changes, 
this translates to an 8.36%11 increase in emergency admissions when the temperature is 
between 22°C and 25°C, relative to [10°C, 13°C). 

  

 
11 That is, ((4.7/56.21) *100) 



Table 6.3. Baseline results 

Reference bin = [10oC, 13oC) Coefficient 
[1oC, 4oC) -5.16* 

(2.29) 
[4oC, 7oC) 1.72* 

(0.83) 
[7oC, 10oC) -1.70*** 

(0.48) 
[13oC, 16oC) 0.83 

(0.59) 
[16oC, 19oC) 2.08** 

(0.78) 
[19oC, 22oC) 3.42*** 

(0.92) 
[22oC, 25oC) 4.70*** 

(1.30) 
[25oC, 28oC) 3.98 

(2.83) 
[28oC,) 2.34 

(3.91) 
Mean dependent variable 56.21 
County fixed effects Yes 
Year trends Yes 
Month fixed effects Yes 
Lagged temperature bins Yes 
Socio-demographic controls Yes 
Rainfall controls Yes 
N 676012 
R2  0.56 

Source: Estimations from Duffy et al. (2024). Notes: * indicates significance at the p<0.5 level, ** at the p<0.01 
level, and *** at the p<0.001 level. Standard errors are provided within parentheses. 

Overall, the main analysis reveals that higher temperatures exceeding 16°C are associated 
with increased rates of emergency hospital admissions. A statistically significant relationship 
is observed between temperatures in the range [16°C, 19°C) and emergency hospital 
admissions. Figure 6.1 shows the increasing magnitude of the coefficient at higher 
temperatures. However, the two highest temperature bins indicate no statistically significant 
relationship, possibly due to the infrequent incidence of temperatures within these ranges in 
Ireland. This result is in line with Gibney et al. (2023), who found significant effects of hotter 
temperatures on morbidity in the context of a relatively mild climate. It is also interesting to 
note that the coefficients for temperature bins [1oC, 4oC) and [7oC, 10oC) are statistically 
significant and negative. This suggests that relatively cold temperatures may have some health 

 
12 To calculate the admissions rate, Dublin observations had to be aggregated. Therefore, the final sample size is 6760 (5 
years x 52 weeks x 26 counties). 
 



benefits for the Irish population, as they reduce emergency hospital admissions. One possible 
explanation could be people’s behavioural response during cold weather, as activities during 
colder temperatures are less likely to cause health problems (White, 2017). It is worth 
mentioning that the coefficients for the lag terms are, in general, not statistically significant. 
The full model results, including the coefficients of the lag terms and other control variables, 
are presented in Appendix B. 

 

Figure 6.1. Coefficient plot for baseline results 

To examine the impact of temperature on morbidity across different age groups, emergency 
admissions were divided into three categories: 0-14 years old, 15-64 years old, and over 64 
years old. The findings are presented in Table 6.4, and the coefficient plot is represented in 
Figure 6.2. The plot effectively demonstrates how the relationship between temperature and 
emergency hospital admissions varies among different age groups. Looking at the coefficient 
plot, it is evident that for children aged (0-14), temperatures above 16°C have a statistically 
significant effect on hospital admissions, consistent with the main analysis. In contrast, for the 
working-age group (15-64), the effects are smaller in magnitude and remain significant only 
within a temperature range of 16 to 25 °C. The pattern of hospital admissions for the older 
age group is similar to that shown in Figure 6.1, although none of the effects are statistically 
significant except for the temperature bin [4oC, 7oC). The lack of statistical significance in the 
effect of temperature change on emergency in-patient hospitalizations for the older 
population during the sample period is somewhat puzzling and warrants further investigation. 

  



Table 6.4. Age group results 

Reference bin = 
[10oC, 13oC) Child (0-14) Age Working Age (15-

64) Older Age (65+)  

[1oC, 4oC) -8.02 
(4.51) 

-2.45 
(1.76) 

-16.59 
(11.57) 

[4oC, 7oC) -0.89 
(1.64) 

-0.09 
(0.64) 

15.11*** 
(4.20) 

[7oC, 10oC) -2.03 
(0.94) 

-1.21** 
(0.37) 

0.47 
(2.40) 

[13oC, 16oC) 2.02 
(1.17) 

0.45 
(0.45) 

1.23 
(2.96) 

[16oC, 19oC) 3.99* 
(1.55) 

1.49* 
(0.60) 

1.28 
(3.95) 

[19oC, 22oC) 6.91*** 
(1.82) 

1.77* 
(0.71) 

3.07 
(4.65) 

[22oC, 25oC) 7.77** 
(2.57) 

2.49* 
(1.00) 

9.91 
(6.56) 

[25oC, 28oC) 1.87 
(5.56) 

0.98 
(2.17) 

18.37 
(14.21) 

[28oC,) -3.70 
(7.68) 

2.87 
(3.01) 

0.80 
(19.64) 

    
Mean dependent 
variable 62.59 31.06 212.18 

County fixed effects Yes Yes Yes 
Year trends Yes Yes Yes 
Month fixed effects Yes Yes Yes 
Lagged temperature 
bins Yes Yes Yes 

Socio-demographic 
controls No No No 

N 6,723 6,756 6,754 
R2  0.65 0.82 0.88 

Source: Estimations from Duffy et al. (2024). Notes: * indicates significance at the p<0.5 level, ** at the p<0.01 
level, and *** at the p<0.001 level. Standard errors are provided within parentheses. The sample sizes differ 
across specifications because some county-week-year units will have no HIPE observations for that age group. 

 



 

Figure 6.2. Coefficient plot for age group analysis 

The analysis is further segmented based on diagnosis categories. The findings in Table 6.5 
exhibit similar patterns to the main results. Notably, the statistically significant coefficients at 
lower temperatures for all categories of diseases, barring metabolic diseases. It is evident that 
there is a decrease in the rate of emergency hospital admissions across all diagnostic groups 
when temperatures range from 1-4°C and 7-10°C. As previous studies have highlighted, this 
could be attributed to a behavioural effect where individuals refrain from seeking medical care 
during extremely cold weather conditions (White, 2017; Gibney et al., 2023).  

Certain health conditions, including circulatory, respiratory, and infectious diseases as well as 
injuries, tend to worsen with higher temperatures. The analysis reveals that emergency 
admissions for metabolic diseases are not significantly affected by cold temperatures but show 
a significant increase in response to warmer temperatures. International literature also 
suggests that rising temperatures can contribute to the prevalence of infectious diseases such 
as E. coli VTEC due to contaminated water sources. Warmer weather allows bacteria to survive 
longer and enter drinking water streams (Romanello et al., 2022). 

  



Table 6.5. Diagnosis group results 

 (1) 
Circulatory 

Disease 

(2) 
Respiratory 

Disease 

(3) 
Metabolic 
Diseases 

(4) 
Infectious 
Diseases 

(5) 
Injuries 

Reference 
bin = [10oC, 
13oC) 

     

[1oC, 4oC) -4.84* 
(2.26) 

-5.02* 
(2.30) 

-4.27 
(2.22) 

-5.18* 
(2.25) 

-5.15* 
(2.28) 

[4oC, 7oC) 1.78* 
(0.82) 

1.68* 
(0.83) 

1.07 
(0.84) 

1.88* 
(0.81) 

1.55 
(0.83) 

[7oC, 10oC) -1.58** 
(0.47) 

-1.74*** 
(0.48) 

-0.85 
(0.46) 

-1.19* 
(0.46) 

-1.56** 
(0.48) 

[13oC, 16oC) 0.69 
(0.58) 

0.68 
(0.59) 

0.84 
(-.57) 

0.66 
(0.58) 

0.74 
(0.59) 

[16oC, 19oC) 1.70* 
(0.78) 

1.58* 
(0.79) 

1.95* 
(0.76) 

1.73* 
0.76) 

1.74* 
(0.78) 

[19oC, 22oC) 3.04** 
(0.92) 

2.90** 
(0.92) 

2.94** 
(0.89) 

3.05** 
0.90) 

3.25** 
(0.92) 

[22oC, 25oC) 4.32** 
(1.29) 

4.28** 
(1.30) 

4.54*** 
(1.27) 

4.40*** 
(1.26) 

4.44** 
(1.29) 

[25oC, 28oC) 3.30 
(2.79) 

3.38 
(2.83) 

6.26* 
(2.79) 

4.28 
(2.78) 

3.50 
(2.80) 

[28oC, ) 0.65 
(3.86) 

0.86 
(3.91) 

2.69 
(3.75) 

0.85 
(3.76) 

0.96 
(3.86) 

      
Mean 
dependent 
variable 

56.30 56.22 57.63 56.54 56.28 

County fixed 
effects Yes Yes Yes Yes Yes 

Year trends Yes Yes Yes Yes Yes 
Month fixed 
effects Yes Yes Yes Yes Yes 

Lagged 
temperature 
bins 

Yes Yes Yes Yes Yes 

N 6,739 6,757 5,839 6,613 6,744 
R2  0.57 0.56 0.61 0.58 0.57 

Source: Authors’ estimations. Notes: * indicates significance at the p<0.5 level, ** at the p<0.01 level, and *** at 
the p<0.001 level. Standard errors are provided within parentheses. The sample size differs by diagnosis group 
because, for some county-week-year units, there were no HIPE observations for certain diagnosis groups. 

Finally, the economic burden of temperature-induced emergency hospital admissions was 
estimated. To do this, the estimated effect of temperature on emergency hospital admissions 
was multiplied by an estimate of the average cost of emergency hospital treatment. It is 



important to note that the estimates in this paper only consider the cost of providing hospital 
services and do not consider willingness to pay to avoid negative health outcomes. Therefore, 
the calculation represents a conservative estimate of the healthcare cost associated with 
temperature-induced morbidity. The calculation suggests that the economic burden, in terms 
of delivering hospital services,13 related to a weekly maximum temperature increase from the 
range [10°C, 13°C) to [22°C, 25°C) varies from €3,000 to €7,000 for every 100,000 population 
per week, contingent on the disease category. 

6.3. Conclusion 
This section investigated the relationship between temperature and morbidity by analysing 
data on emergency hospital admissions between 2015 and 2019 using panel fixed-effects 
methods. The empirical results indicate that even in a country with moderate climate 
conditions, higher temperatures can increase emergency hospital admissions. For example, in 
a week where the maximum temperature either reached or exceeded 22°C but remained 
below 25°C, there were an additional 4.7 cases of emergency hospital admissions for every 
100,000-population compared to a week with a maximum temperature falling within the 
reference range of [10°C,13°C). Regarding providing hospital services, the annual economic 
burden associated with this temperature-related morbidity varies from €156,000 to €364,000 
for every 100,000 population, contingent on the length of stay. 

It is recognised that the data and analysis in this paper have certain limitations. Firstly, there 
was difficulty in determining the specific individuals who were most susceptible to higher 
temperatures based on the available data. To mitigate this limitation, it was decided to focus 
on identifying diagnoses more vulnerable to healthcare needs resulting from high 
temperatures. The absence of a unique patient identifier in Ireland prevented us from tracking 
patients across multiple hospital episodes. As a result, the impact of varying temperatures at 
an individual level could not be investigated. Secondly, it is important to acknowledge that the 
data is based on hospital admissions at the discharge level. Therefore, healthcare capacity and 
supply-side constraints that could limit the response in hospital admissions to temperature 
variation cannot be accounted for. Finally, whilst year trends and county and seasonal patterns 
that may affect emergency in-patient hospitalisations over time have been controlled for, it is 
still possible that there are omitted variables that may be correlated with temperature. 

7 Conclusions and Recommendations 
This paper examines the economic impacts of climate change in Ireland across five categories: 
coastal flooding, labour productivity, agriculture, river flooding, and health. Different methods 
and models based on available data were used to quantify these impacts.  

The financial impacts differ depending on the category. Without any additional mitigation 
measures, the total cost of sea level rising by 0.56 meters under SSP2-RCP4.5 is approximately 

 
13 Cost estimates provided by the HPO, which are based upon Activity-Based Funding (ABF), were used. These costs reflect 
all resources used to care for a patient and as well consider the complexity of the care provided and the patient case mix. 
For example, patients with longer length of stay are provided with greater weight when determining the resources they 
consume. 



€2 billion in 2050 and may grow to €3 billion by 2100. An increase in WBGT reduces labour 
productivity in Ireland even when this is still below the established heat stress thresholds. 
There are positive impacts on barley and wheat growth and improved grass production, which 
benefits livestock, due to the climatic changes. Without implementing additional adaptation 
measures, the projected annual economic damage from river flooding for 2070 under a 
moderate warming scenario of SSP2-RCP4.5 is about €95 million. When the temperature 
increases from [10°C,13°C) to [22°C, 25°C), the economic burden in terms of delivering 
hospital services ranges from €156,000 to €364,000 for every 100,000 population per annum. 

While the analysis provides valuable insights into the economic costs associated with climate 
change impacts, it is important to recognise the limitations and uncertainties inherent in such 
assessments. The estimates are based on current knowledge and available data, but future 
developments in climate science, socio-economic trends, and adaptation efforts may 
influence these projections. Also, although this work has quantified certain impacts for 
Ireland, many others remain. Biodiversity, energy demand changes, or extreme events, to 
name a few, were not considered. This was due to the lack of appropriate data and the 
limitations of this project. Hence, the main conclusion is that Ireland will face significant 
impacts, some of which have been quantified, and others are still not fully understood.  

This work has led to some surprising findings. In some cases, impacts were larger than 
expected (e.g., health care costs) or lower than expected (agriculture). This highlights the 
importance of continued research on the impacts of climate change in Ireland. Effective and 
efficient policy setting relies on reliable evidence of potential climate impacts, which this work 
hopes to provide. However, further research is needed. Future research within this project will 
consider (i) how different adaptation strategies reduce these costs and (ii) how these initial 
impacts affect the rest of the Irish economy. 

Ultimately, addressing the impacts of climate change requires a concerted and collaborative 
effort at all levels of society. By taking proactive steps to adapt to a changing climate, Ireland 
can minimise economic costs, protect vulnerable communities and ecosystems, and build a 
more resilient and sustainable future for future generations. 
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Appendix A: Boxplots for Labour Productivity and 
WBGT 
 

 

Figure A.1: Labor Productivity by Outdoor WBGT Bins 

 

Figure A.2: Labor Productivity by Indoor WBGT Bins 

  



Appendix B: Additional Results for Health Impacts 
Table B.1: Lagged temperature effects 

 1-Week Lag 
Coefficients 

2-Week Lag 
Coefficients 

3-Week Lag 
Coefficients 

Reference bin = 
[10oC, 13oC) 

   

[1oC, 4oC) 7.71** 
(2.34) 

1.25 
(2.33) 

-2.75 
(2.34) 

[4oC, 7oC) 2.60** 
(0.84) 

3.92*** 
(0.83) 

-4.28*** 
(0.84) 

[7oC, 10oC) 0.94* 
(0.47) 

1.16* 
(0.48) 

-1.92*** 
(0.47) 

[13oC, 16oC) -0.89 
(0.59) 

-2.01*** 
(0.60) 

-0.57 
(0.59) 

[16oC, 19oC) -2.01** 
(0.77) 

-2.01* 
(0.81) 

0.22 
(0.79) 

[19oC, 22oC) -2.02* 
(0.94) 

-2.45* 
(0.96) 

-0.15 
(0.93) 

[22oC, 25oC) -1.54 
(1.31) 

-2.37 
(1.32) 

0.36 
(1.29) 

[25oC, 28oC) 0.73 
(2.92) 

-3.76 
(2.90) 

-0.38 
(2.79) 

[28oC, ) 2.09 
(4.03) 

-2.88 
(4.00) 

-2.83 
(4.01) 

Notes: * indicates significance at the p<0.5 level, ** at the p<0.01 level, and *** at the p<0.001 level. Standard 
errors are provided within parentheses. 

Table B.2: Coefficients for other control variables 

 coefficient 

Mean of Charlson Co-Morbidity Index 
0.32 
(0.69) 

Mean Number of Medical Card 
7.08*** 
(1.91) 

Mean Public/Private Status 
5.92* 
2.41 

Mean Marital Status 
-1.55 
(1.06) 

Male – Age 0-9  
-7.77 
(6.28) 

Male – Age 10-19 
-5.88 
(7.30) 

Male – Age 20-29 
-2.13* 
(0.83) 

Male – Age 30-49 -12.93 



(6.69) 

Male – Age 50-69 
-1.83 
(6.51) 

Male – Age 70-79 
-7.02 
(6.57) 

Male – Age 80-89 
-.56 
(6.67) 

Male – Age 90+ 
10.41 
(9.41) 

Female – Age 0-9  
5.26 
(6.14) 

Female – Age 10-19 
5.54 
(7.87) 

Female – Age 20-29 
-12.25 
(8.91) 

Female – Age 30-49 
-7.83 
(7.32) 

Female – Age 50-69 
-1.83 
(6.51) 

Female – Age 70-79 
-1.81 
(6.72) 

Female – Age 80-89 
2.44 
(6.73) 

Female – Age 90+ 
-3.19 
(7.95) 

 

  



Appendix C: Estimating natural wet bulb temperature 
and black globe temperature from climate data 

Using air temperature in degrees Celsius and relative humidity as a percentage, we estimated 
the natural wet bulb temperature (𝑇𝑇𝑙𝑙𝑛𝑛𝑛𝑛) using the empirical relationship provided by Stull 
(2011). 

𝑇𝑇𝑙𝑙𝑛𝑛𝑛𝑛 =  𝑇𝑇𝑆𝑆 × arctan �0.151977 × �𝑅𝑅𝑅𝑅+ 8.313659� + arctan(𝑇𝑇𝑆𝑆 + 𝑅𝑅𝑅𝑅)
− arctan(𝑅𝑅𝑅𝑅− 1.676331)
+  0.00391838 × √𝑅𝑅𝑅𝑅3  × arctan(0.023101 × 𝑅𝑅𝑅𝑅)−  4.686035  

where 𝑇𝑇𝑆𝑆 is the air temperature and 𝑅𝑅𝑅𝑅 is relative humidity. 

We used air temperature in degrees Celsius, wind speed in meters per second, and surface 
net downward shortwave radiation in watts per square meter to estimate the black globe 
temperature using the following approximations based on Liljegren et al. (2008). 

Step 1: The Mean Radiant Temperature (MRT) was estimated using the following formula: 

𝑀𝑀𝑅𝑅𝑇𝑇 =  �
𝑆𝑆
𝜖𝜖𝜖𝜖
�
0.25

 

where 𝜖𝜖 is the emissivity of the black globe (typically 0.95 for a black globe), 𝜖𝜖 is the Stefan-
Boltzmann constant (i.e., 5.67 ×  10−8 𝑊𝑊/𝑡𝑡2𝐾𝐾4), and 𝑆𝑆 surface net downward shortwave 
radiation. 

Step 2: The convective heat transfer coefficient (ℎ𝑐𝑐) was estimated as follows: 

ℎ𝑐𝑐 = 1.4 + 0.135 × 𝑇𝑇𝑆𝑆 + 0.055 × 𝑣𝑣2 

where 𝑇𝑇𝑆𝑆 is the air temperature and 𝑣𝑣 is wind speed. 

Step 3: The black globe temperature (𝑇𝑇𝑔𝑔) was estimated as follows: 

𝑇𝑇𝑔𝑔 =  �
𝑆𝑆 ×  𝛼𝛼𝑔𝑔 +  𝜖𝜖 ×  𝜖𝜖 × (𝑀𝑀𝑅𝑅𝑇𝑇)4

ℎ𝑐𝑐
�

0.25

 

where 𝛼𝛼𝑔𝑔 is the absorptivity of the globe (with a value of 0.05) and the other terms remain 
the same as in the previous descriptions. For indoor conditions, the black globe temperature 
was assumed to be approximately equal to the air temperature (i.e., 𝑇𝑇𝑔𝑔  ≈  𝑇𝑇𝑆𝑆) (Lemke & 
Kjellstrom, 2012). 
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